Graph Coloring (9A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Graph Coloring

graph coloring is a special case of graph labeling;
it is an assignment of labels (colors)
to elements of a graph subject to certain constraints.
a vertex coloring
is a way of coloring the vertices of a graph
such that no two adjacent vertices share the same color

an edge coloring

assigns a color to each edge so that no two adjacent edges share the same color
a face coloring of a planar graph
assigns a color to each face or region so that no two faces that share a boundary have the same color.

Graph Coloring Relations

an edge coloring of a graph
is just a vertex coloring of its line graph,
a face coloring of a plane graph
is just a vertex coloring of its dual graph.
However, non-vertex coloring problems are often stated and studied as is.
a graph coloring means almost always a vertex coloring.

Since a vertex with a loop could never be properly colored, a loopless graph is generally assumed.

k-coloring and chromatic number

k-coloring

a coloring using at most \mathbf{k} colors
chromatic number, $\chi(G)$
the smallest number of colors needed to color a graph \mathbf{G}

A graph that can be assigned a (proper) k-coloring is k-colorable

A graph whose chromatic number is exactly \mathbf{k} is k-chromatic

Color Class

A subset of vertices assigned to the same color is called a color class,
every such class forms an independent set.
a k-coloring is the same as a partition of the vertex set into \mathbf{k} independent sets,
the terms k-partite and \mathbf{k}-colorable have the same meaning.

Bipartite Graph

a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V such that every edge connects a vertex in U to one in V.

Vertex sets U and V are usually called the parts of the graph.

Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

Bipartite Graph : 2-colorable

The two sets U and V may be thought of as a coloring of the graph with two colors:
if one colors all nodes in U blue, and all nodes in V green, each edge has endpoints of differing colors, as is required in the graph coloring problem.

In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: 3 colors

Bipartite Graph : degree sequence

The degree sum formula for a bipartite graph states that

$$
\sum_{v \in V} \operatorname{deg}(v)=\sum_{u \in U} \operatorname{deg}(u)=|E| .
$$

The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts U and V .

For example, the complete bipartite graph $\mathrm{K}_{3,5}$ has degree sequence $(5,5,5)$, $(3,3,3,3,3)$
$\mathrm{K}_{5,3}$ has degree sequence $(3,3,3,3,3),(5,5,5)$

References

[1] http://en.wikipedia.org/
[2]

