
ELF1 7B PIC Method - ELF Study 1999

Young W. Lim

2020-04-17 Fri

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 1 / 78

Outline

1 Relocs and memory locations
TOC
Overview
Code and data segments
ELF Relocations
Global and local symbol relocs

2 PIC mechanism
TOC
Operations in the code
Operations in the PLT
OPerations in the GOT

3 PIC’s accessing absolute addresses
TOC
1. Global Offset Table Addressing
2. Procedure Linkage Table Addressing

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 2 / 78

TOC: Relocs and memory locations

Overview
Code and data segments
ELF relocations
Global and local symbol relocs

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 3 / 78

Handling inter-related referece

linking in the old days

at compile time, inter-related references are not resolved
.o files include a reloc object that contains
the information on these inter-related references
at link time, the linker would merge these informations
in .o files building a table of where symbols are ultimately located.
the linker would run through the set of relocs, filling them in

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 4 / 78

Reloc attributes

A reloc consists of three parts:

where in memory the fix is to be made
the symbol which is involved in the fix
an algorithm that the linker should use to create the fixup

The algorithm can be as simple as R_386_32
"use the symbol memory location; store it in binary"
complicated, such as R_ARM_PC26
"calculate the distance from here to the symbol, divide by 4,
subtract 2 and add the result to the 3 lower bytes"

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 5 / 78

Static linking

these relocs are scattered through the .o files,
and are used at link time create the correct binary executable file.
resolving all the relocs is necessary
in the days of static linking

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 6 / 78

Dynamic linking

run-time linking
the designers of the ELF format enabled reloc entites
to hold run-time resolution information.

So now executable files may have relocs in them,
even after linking

ELF implements run time linking
by deferring function resolution
until the function is called.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 7 / 78

New algorithm

However, new algorithms are required to inform
how these fixups are to be done.
Hence the introduction of a new family of reloc algorithms

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 8 / 78

Relocation

Binary executables often need certain bits of information
fixed up before they execute

ELF binaries carry a list of relocs (relocation table)
which describe these fixups

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 9 / 78

Relocation entries

Each reloc contains relocation entry

the address in the binary that is to get the fixup (offset)
the algorithm to calculate the fixup (type)
a symbol (string and object length)

At fixup time,
the algorithm (type) uses the offset & symbol,
along with the value (addend) currently in the file,
to calculate a new value to be stored into memory.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 10 / 78

Code and Data

One of the characteristics of the ELF binary system is
a separation of code and data.

The code of apps and libraries is marked
read-only and executable

The data is marked
read-write, and not-executable.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 11 / 78

Code segment (1)

The code is read-only
so that multiple processes can share the code,

the code is loaded into memory only once.
the code is never modified,
and appears identical in each process space.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 12 / 78

Code segment (2)

Each process has its own page tables,
mapping the code into its own memory.

therefore the code must be position independent
each process can load the code into a different address

The code segment is allowed to contain
constant pointers and strings (.rodata).

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 13 / 78

Data segment (1)

The data segment is read-write and
is mapped into each process space differently.

In Linux, each data segment is loaded
from the same base mmap (identical),
but it is marked copy-on-write (own copy later)

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 14 / 78

Data segment (2)

after the first write,
each process has its own copy of the data.
(in its own read-write segment)

therefore, relocs can only point
to the data segment (_identically_)

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 15 / 78

ELF code and data segments memory layout

an ELF executable consists of a group of code segments
followed by a group of data segments
GOT is located at the beginning of data pages

regardless of the load address
(wherein the address space the program loaded)
the offset from the code to the data doesn’t change

J. R. Levine, Linkers and Loaders

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 16 / 78

ELF data references

if the code can load its own address into a register,
the data will be at a known distance from that address

references to data in the program’s own data segment can use
efficient based addressing with fixed offsets

J. R. Levine, Linkers and Loaders

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 17 / 78

Relocs in code and data segments

the relocs in the data segment are easy to be done

add relative offsets or
write absolute addresses

the relocs in the code area are more difficult.

the ELF reloc design makes the code relocs intact
an GOT entry in the data area is to be filled,
(Global Offset Table).

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 18 / 78

Relocs using GOT for a global object

if code needs to refer to a global object,
it refers to an entry in the GOT[],

at run-time, the GOT entry is fixed-up
to point to the correct address of the global object.
the code space need never be fixed-up at run time.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 19 / 78

Relocs using GOT for a local object

if the code needs to refer to a local object,
it refers to it relative to the &GOT[0];

no run-time fixed-up
this too is position independent

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 20 / 78

Function addresses

References to a function address from an executable file and
from the shared objects associated with the file
must resolve to the same value.
References from within shared objects

will normally be resolved (by the dynamic linker)
to the virtual address of the function itself

References from within the executable file
to a function defined in a shared object

will normally be resolved (by the linkage editor)
to the address of the PLT entry
for that function within the executable file.

http://refspecs.linuxfoundation.org/ELF/zSeries/lzsabi0_zSeries/x2251.html#PROCEDURELINKAGETABLE

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 21 / 78

Relocs using PLT

If the code needs to jump to a subroutine
in a different module,
the linker creates an array of jump-stubs
called the PLT (procedure linkup table)

these jump-stubs in the PLT jump indirect,
using an entry in the GOT[]
to implement the far call

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 22 / 78

Deferring function resolution

ELF implements run time linking
by deferring function resolution
until the function is called.

calls to library functions go through a fix-up process
just after the first time call is made

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 23 / 78

GOT relative

GOT-relative (GOTOFF) code is made
relative to the start of the GOT table (O)

relative to the load address of the module (X)

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 24 / 78

Global symbol relocs

global relocs must neccessarily involve
the three aspects of a reloc:

where in memory the reloc is to be made
the symbol involved in the reloc
the algorithm used to make the fixup.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 25 / 78

Local symbol relocs

a local symbol can be fixed in memory
with respect to a memory "section",

the object file is allowed to
drop the local symbol name, and
replace it with a section-plus-offset

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 26 / 78

ARM code example (1)

.section .text
mov r0, r0 @sample code

.L2: call _do_something
ldr r6, .L3 @this code need a reloc!
mov r0, r0

.L4: .word Lextern

.L3: .word .L2 @this read-only data needs a reloc

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 27 / 78

ARM code example (2)

the code on the 3rd line (the call) needs to be fixed up,
but that’s easy, since it’s a PC relative fixup.
.L2: call _do_something

If the .o file has no idea where .Lextern is,
.L4: .word Lextern

it must neccessarily create a reloc which refers to symbol Lextern
.L4: .word 0 R_ARM_32 Lextern

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 28 / 78

ARM code example (3)

the word at .L3 needs a fixup as well.
.L3: .word .L2 @this read-only data needs a reloc

If the .o file can determine the location of a local symbol,
such as L2, then it is allowed to replace the symbol
with a section-plus-offset
The offset is stored in the reloc target address, and
the section is an entry in the reloc symbol table
.L3: .word 4 R_ARM_32 .text

This reduces the number of symbols in the symbol table,
making run-time linking easier.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 29 / 78

ARM code example (4)

the R_*_GOTOFF and R_*_GOT32 relocs include

R_386_GOTOFF : GOT-relative, local symbol address
R_386_GOT32 : GOT-relative, GOT entry address

an offset from &GOT[0], which is usually about
halfway through the module.
The R_ARM_RELATIVE relocs, on the other hand,
contains an offset from the beginning of the module. Tradition.

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 30 / 78

TOC: PIC mechanism

Operations in the code
Operations in the PLT
Operations in the GOT

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 31 / 78

TOC: Operations in the code

Lazy binding and constraints
THree steps in a far jump
Operations in the code

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 32 / 78

Lazy binding and constraints

ELF dynamic linking defers the resolution
of jump / call addresses until the last minute.

Constraints:

should not force a change in the assembly code produced for apps
but may cause changes as an assembly code is changed for PIC
all executable codes must not be modified at run time
any modified data must not be executed at run time

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 33 / 78

Three steps in a far jump

1 start in the code
2 go through the PLT
3 using a pointer from the GOT

the GOT entries that are used for PLT execution
have default addresses initially
give control back to the corresponding PLT entry stub
consisitng of push and jmp PLT[0] sequence

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 34 / 78

Operations in the code

call function_call_n

the relative jump or call
the target is a PLT entry PLT[n+1]

it is (n+1)-th entry not the n-th entry
PLT[0] is the special first entry

call PLT[n+1] : similar to a normal call
assume n is a number

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 35 / 78

TOC: Operations in the PLT

PLT entry : stub code
Indirect call through the GOT
push, jmp PLT[0] sequence
overriding the default GOT[n+3]
the special entry PLT[0]

Summary of steps

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 36 / 78

(1) PLT entry : stub code

the PLT is a synthetic area, created by the linker
exists in both executable and libraries
an array of stubs, one per imported function call
through PLT[0], the resolver is called at last

PLT[n+1]: jmp *GOT[n+3]
push #n ; push n as a argument to the resolver
jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 37 / 78

(2) indirect call through GOT

a call to PLT[n+1] will result in indirect call through GOT[n+3]

because of three special GOT entries : GOT[0,1,2]
jmp *GOT[n+3] ; 6-byte long

initially, the value at GOT[n+3] points back to PLT[n+1]+6

the next instruction after the 6 byte instruction jmp *GOT[n+3]
push and jmp PLT[0] sequence

PLT[n+1]: jmp *GOT[n+3] ; 6 bytes insturction
PLT[n+1]+6: push #n ; push n as a argument to the resolver

jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 38 / 78

(3) push, jmp PLT[0] sequence

by the instruction at PLT[n+1]+6, n is pushed onto the stack
as an argument for the resolver (push #n)
consider n as an ID for the called library function
the resolver uses the argument n on the stack
in resolving the symbol n (here n is treated as a symbol)

PLT[n+1]: jmp *GOT[n+3] ; 6 bytes insturction
PLT[n+1]+6: push #n ; push n as a argument to the resolver

jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 39 / 78

(4) overriding the default GOT[n+3]

the resolver is called by the stub at PLT[0]

the resolver modifies the default value at GOT[n+3]
to point the correct target symbol n
overrides PLT[n+1]+6 (the default value at G[n+3])

thus after the first call, the control is taken
directly to the correct target symbol n (function_call_n)
instead of executing the push-jump sequence (through

PLT[n+1]: jmp *GOT[n+3] ; 6 bytes insturction
PLT[n+1]+6: push #n ; push n as a argument to the resolver

jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 40 / 78

(5) the special entry PLT[0]

the resolver needs 2 argument

symbol n is already on the stack
pointer to the relocation table : GOT[1]
&GOT[1] is added on the stack

the resolver that is located in ld-linux.so.2
can determine which library function is asked for its service
using these two arguments on the stack
GOT[2] : entry point of dynamic linker

PLT[0]: push &GOT[1]
jmp GOT[2] ; entry point of dynamic linker

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 41 / 78

Summary of steps

1. call PLT[n+1]

2. jmp *GOT[n+3]

at the 1st call, jmp PLT[n+1]+6

- push #n
- jmp PLT[0]

- push &GOT[1] (pointer to the reloc table)
- jmp GOT[2] (entry point of dynamic linker)

after the 1st call, jmp n

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 42 / 78

TOC: Operations in the GOT

Three types of GOT entries
the three special GOT entries
the PLT-fixup
the PLT-fixup vs data-fixup

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 43 / 78

(1) three types of GOT entries

the GOT contains helper pointers
for both PLT fixups and GOT fixups

the first 3 entries are special and reserved
the next M entries belong to the PLT fixups
the next D entries belong to various data fixups

the GOT is a synthetic area, createdy by the linker
exists in both executables and libraries

each library and executable
gets its own PLT and GOT array

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 44 / 78

(2) the three special GOT entries

the special 3 entries in the GOT
GOT[0] : linked list pointer used by the dynamic linker
address of .dynamic section

GOT[1] : pointer to the reloc table for this module
module identification info for the linker

GOT[2] : pointer to the fixup / resolver code, located in ld-linux.so.2
entry point in dynamic linker

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 45 / 78

(3) the PLT-fixup

when the GOT is first set up,
all the GOT entries related to PLT fixups
are pointing to code back at PLT[0]

GOT[n+3] are pointing back to PLT[n+1]+6
which eventually jump to PLT[0] to call the resolver

PLT[n+1]: jmp *GOT[n+3]
push #n ; push n as a argument to the resolver
jmp PLT[0]

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 46 / 78

(4) the PLT-fixup vs data-fixup

M entries belong to the PLT fixups

GOT[3] indirect function call helpers
GOT[4] indirect function call helpers
.
GOT[3+M-1] indirect function call helpers,

one per imported function

D entries belong to various data fixups

GOT[3+M] indirect pointers to global data references
GOT[3+M+1] indirect pointers to global data references
.
GOT[end] indirect pointers to global data references

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 47 / 78

TOC: PIC’s accessing absolute addresses

Global Offset Table Addressing
Process Linkage Table Addressing

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 48 / 78

TOC: 1. Global Offset Table Addressing

Position independent references to absolute locations
Loadable object file
The link editor and the runtime linker
Separate GOT’s
Address of the dynamic structure
Memory segment addresses
_GLOBAL_OFFSET_TABLE_

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 49 / 78

Position independent references to absolute locations

PIC cannot, in general, contain absolute virtual addresses
GOTs hold absolute addresses in private data
Addresses are therefore available without compromising
the position-independence and
shareability of a program’s text.
A program references its GOT in a position-independent way
and extracts absolute values.
this technique redirects position-independent references
to absolute locations.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-74186/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 50 / 78

Loadable object file

Initially, the GOT holds information
as required by its relocation entries.
After the system creates memory segments
for a loadable object file,
the runtime linker processes the relocation entries
for example, R_386_GLOB_DAT in the entries of GOT

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-74186/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 51 / 78

The link editor and the runtime linker

The runtime linker
determines the associated symbol values,
calculates their absolute addresses, and
sets the appropriate memory table entries to the proper values.
Although the absolute addresses are unknown
when the link-editor creates an object file,
the runtime linker
knows the addresses of all memory segments and
can thus calculate the absolute addresses
of the symbols contained therein.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-74186/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 52 / 78

Separate GOT’s

If a program requires direct access
to the absolute address of a symbol,
that symbol will have a GOT entry.
Because the executable file and shared objects
have separate global offset tables,
a symbol’s address can appear in several tables.
The runtime linker processes all the GOT relocations
before giving control to any code in the process image.
This processing ensures that
absolute addresses are available during execution.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-74186/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 53 / 78

Address of the dynamic structure

The table’s entry zero is reserved
to hold the address of the dynamic structure,
referenced with the symbol _DYNAMIC.
This symbol enables a program, such as the runtime linker,
to find its own dynamic structure
without processing its relocation entries.

This method is especially important for the runtime linker,
because it must initialize itself without relying
on other programs to relocate its memory image.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-74186/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 54 / 78

Memory segment addresses

The system can choose different memory segment addresses
for the same shared object in different programs.
It can even choose different memory segment addresses
for different executions of the same program.
Nonetheless, memory segments do not change addresses
once the process image is established.
As long as a process exists, its memory segments
reside at fixed virtual addresses.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-74186/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 55 / 78

_GLOBAL_OFFSET_TABLE_

A GOT’s format and interpretation are processor-specific
For SPARC and IA processors, the symbol
GLOBAL_OFFSET_TABLE
can be used to access the table.
this symbol can reside in the middle of the .got section,
allowing both negative and nonnegative subscripts
into the array of addresses.
The symbol type is an array of Elf32_Addr for 32-bit code,
and an array of Elf64_Addr for64-bit code:
extern Elf32_Addr _GLOBAL_OFFSET_TABLE_[];
extern Elf64_Addr _GLOBAL_OFFSET_TABLE_[];

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-74186/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 56 / 78

TOC: 2. Procedure Linkage Table Addressing (1)

GOT and PLT for absolute locations
Function calls and link-editor
Function calls and runtime linker
Procedure Linkage Table example
Different addressing modes

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 57 / 78

TOC: 2. Procedure Linkage Table Addressing (2)

Step 1 - the second and third entries in the GOT
Step 2 - the GOT address in %ebx

Step 3 - jump to the corresponding PLT entry
Step 4 - the first instruction of the PLT entry
Step 5 - the seond instruction of the PLT entry
Step 6 - the first entry of the PLT
Step 7 - the actual address of the function
Step 8 - the subsequent function calls
LD_BIND_NOW

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 58 / 78

GOT and PLT for absolute locations

The GOT converts position-independent
address calculations to absolute locations.

The PLT converts position-independent
function calls to absolute locations.

Executable files and shared object files have
separate GOT’s and separate PLT’s

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 59 / 78

Function calls and link-editor

The link-editor cannot resolve
execution transfers such as function calls
from one executable or shared object to another

So, the link-editor arranges to have
the program transfer control
to entries in the PLT.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 60 / 78

Function calls and runtime linker

For 32-bit IA dynamic objects,
the PLT resides in shared text but
uses addresses in the private GOT.

The runtime linker determines
the absolute addresses of the destinations and
modifies the GOT’s memory image accordingly.

The PLT thus redirects the entries
without compromising the position-independence and
shareability of the program’s text.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 61 / 78

Procedure Linkage Table Example

.PLT0: .PLT0:
pushl got_plus_4 pushl 4(%ebx)
jmp *got_plus_8 jmp *8(%ebx)
nop; nop nop; nop
nop; nop nop; nop

.PLT1: .PLT1:
jmp *name1_in_GOT jmp *name1@GOT(%ebx)
pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

.PLT2: .PLT2:
jmp *name2_in_GOT jmp *name2@GOT(%ebx)
pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

-- Absolute code -- Position independent code

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 62 / 78

Different addressing modes

the PLT instructions use
different operand addressing modes for

absolute code
position-independent code.

got_plus_4 4(%ebx)
*got_plus_8 *8(%ebx)
*name1_in_GOT *name1@GOT(%ebx)
*name2_in_GOT *name2@GOT(%ebx)

-- Absolute code -- Position independent code

Nonetheless, their interfaces to the runtime linker
are the same.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 63 / 78

Step 1 - the second and third entries in the GOT

the runtime linker and program cooperate to resolve
the symbolic references through the PLT and the GOT

When first creating the memory image of the program,
the runtime linker sets the 2nd and 3rd entries
in the GOT to special values.

the scond GOT entry : identifying information
the third GOT entry : jump to the runtime linker

got_plus_4 4(%ebx)
got_plus_8 8(%ebx)

-- Absolute code -- Position independent code

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 64 / 78

Step 2 - the GOT address in %ebx

If the PLT is position-independent,
the address of the GOT must be in %ebx.

each shared object file in the process image
has its own PLT

control transfers to a PLT entry
only from within the same object file

So, the calling function must set
the GOT base register %ebx
before it calls the PLT entry

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 65 / 78

Step 3 - jump to the corresponding PLT entry

for example, the program calls name1,
which transfers control to the label .PLT1.

R_386_PLT32 reloc in .o file has been resolved
by PC-relative, PLT entry address
from the symbol reference (function call)
R_386_JMP_SLOT reloc in .so file
has a entry in GOT and the the runtime linker will
fill it with the target address

.PLT1: .PLT1:
jmp *name1_in_GOT jmp *name1@GOT(%ebx)
pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 66 / 78

Step 4 - the first instruction of the PLT entry

The first instruction (jmp *name1@GOT(%ebx))
jumps to the address in the GOT entry for name1.

Initially, the GOT entry holds
the address of the following instruction of jmp

the address of the 2nd instruction
of the PLT entry (pushl $offset)
not the real address of name1.

.PLT1: .PLT1:
jmp *name1_in_GOT jmp *name1@GOT(%ebx)
pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 67 / 78

Step 5 - the remaining instructions of the PLT entry

The program pushes the offset of a relocation entry on the stack.
a 32-bit, nonnegative byte offset in the relocation table
The designated relocation entry has

R_386_JMP_SLOT relocation type
relocation offset specifies the GOT entry for name1
used in the previous instruction jmp *name1@GOT(%ebx)
a symbol table index, which the runtime linker
uses to get the referenced symbol, name1.

After pushing the relocation offset, the jmp .PLT0@PC
instruction jumps to .PLT0, the first entry in the PLT.

pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 68 / 78

Step 6 - the first entry of the PLT

The pushl 4(%ebx) instruction pushes
the address of the second GOT entry on the stack,
giving the runtime linker one word of identifying information

then jmp * 8(%ebx) instruction jumps to
the address in the third GOT entry,
to jump to the runtime linker

pushl got_plus_4 pushl 4(%ebx)
jmp *got_plus_8 jmp *8(%ebx)

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 69 / 78

Step 7 - the actual address of the function

The runtime linker unwinds the stack,

checks the designated relocation entry

relocation type R_386_JMP_SLOT
relocation offset *name1@GOT(%ebx)
symbol table index

gets the symbol’s value
stores the actual address of name1 in its GOT entry,
jumps to the destination (the actual address of name1)

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 70 / 78

Step 8 - the subsequent function calls

Subsequent executions of the PLT entry
transfer directly to name1,
without calling the runtime linker again
(the address in the third GOT entry)

The jmp instruction at .PLT1 jumps to name1
instead of falling through to the pushl instruction.

.PLT1: .PLT1:
jmp *name1_in_GOT jmp *name1@GOT(%ebx)
pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

*name1_in_GOT *name1@GOT(%ebx)
initially contains the address of the next pushl instruction
then is modified to have the address of the called function

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 71 / 78

Initial function calls

.PLT1 (the PLT entry for name1)

.PLT1: .PLT1:
jmp *name1_in_GOT jmp lP *name1@GOT(%ebx)
pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

.PLT0 (the first PLT entry)

.PLT0: .PLT0:
pushl got_plus_4 pushl 4(%ebx)
jmp *got_plus_8 jmp *8(%ebx)

runtime linker jumps to the address of name1

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 72 / 78

Subsequent function calls

.PLT1

.PLT1: .PLT1:
jmp *name1_in_GOT jmp lP *name1@GOT(%ebx)

directly jump to name1

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 73 / 78

LD_BIND_NOW_

The LD_BIND_NOW environment variable changes
dynamic linking behavior.
If its value is non-null, the runtime linker processes
R_386_JMP_SLOT relocation entries (PLT entries)
before transferring control to the program.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 74 / 78

Relocation Entry

relocation entries for code are placed in .rel.text

relocation entries for initialized data are in .rel.data
typedef struct {

int offset;
int symbol:24,

type:8;
} Elf32_Rel;

The relocation entry for the PLT example has

relocation offset specifies the GOT entry for name1
used in the previous instruction jmp *name1@GOT(%ebx)
symbol table index, which the runtime linker
uses to get the referenced symbol, name1.
relocation type R_386_JMP_SLOT

https://people.cs.pitt.edu/~xianeizhang/notes/Linking.html#reloc

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 75 / 78

Offsets in a PLT entry

Offset in a PLT entry

the pushed offset $offset = 8n = sizeof(Elf32_Rel) ∗n
the offset of a relocation entry in the relocation table

the jump offset var@GOT(%ebx)

The symbol term (reference) is replaced with offset
from the start of the GOT to the GOT slot for the symbol

.PLT1: .PLT1:
jmp *name1_in_GOT jmp *name1@GOT(%ebx)
pushl $offset pushl $offset
jmp .PLT0@PC jmp .PLT0@PC

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 76 / 78

Offset in R_386_JMP_SLOT type relocation

relocation entries for a PLT are placed in .rel.plt

Relocation offset of R_386_JMP_SLOT type relocation
specifies the GOT entry for a given function (.got.plt)

Its offset member gives the location of a GOT entry
The runtime linker modifies the GOT entry
to transfer control to the designated symbol address.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 77 / 78

PLT (6)

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-1235/index.html

Young W. Lim ELF1 7B PIC Method - ELF Study 1999 2020-04-17 Fri 78 / 78

	Relocs and memory locations
	TOC
	Overview
	Code and data segments
	ELF Relocations
	Global and local symbol relocs

	PIC mechanism
	TOC
	Operations in the code
	Operations in the PLT
	OPerations in the GOT

	PIC's accessing absolute addresses
	TOC
	1. Global Offset Table Addressing
	2. Procedure Linkage Table Addressing

