
Young Won Lim
1/17/18

Maybe Monad (3C)

Young Won Lim
1/17/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Maybe Monad (3C) 3 Young Won Lim
1/17/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Maybe Monad (3C) 4 Young Won Lim
1/17/18

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

Maybe Monad (3C) 5 Young Won Lim
1/17/18

Maybe Monad

a Monad is just a special Functor with extra features

Monads like Maybe

map types a to a new type Maybe a

that represent "computations that result in values"

● Wrap meaningful values by Just x
● All meaningless values by Nothing

Monads like Maybe, the bind (>>=) operation

passes meaningful values through Just, while
Nothing will force the result to always be Nothing.

https://wiki.haskell.org/Maybe

a Maybe a

Maybe Monad (3C) 6 Young Won Lim
1/17/18

An immediate abort

Maybe is also a Monad

represents “computations that could fail to return a value"

enables an immediate abort

by a valueless return in the middle of a computation.

enable a whole bunch of computations

without explicit checking for errors in each step

a computation on Maybe values stops

as soon as a Nothing is encountered

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

context

semantics

effects

Maybe Monad (3C) 7 Young Won Lim
1/17/18

Maybe type constructor

The type constructor is m = Maybe

 return :: a -> Maybe a

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

general Monad type class

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

Maybe Monad (3C) 8 Young Won Lim
1/17/18

Maybe Monad Implementation

The type constructor is m = Maybe

 return :: a -> Maybe a

 return x = Just x

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 mx >>= g = case mx of
 Nothing -> Nothing
 Just x -> g x

 mx :: Maybe a
 g :: a -> Maybe b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3C) 9 Young Won Lim
1/17/18

Maybe Monad - >>=

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 mx >>= g = case mx of
 Nothing -> Nothing
 Just x -> g x

if there is an underlying value of type a in m,
we apply g to it, which brings the underlying value back into the Maybe monad.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

>>=1st arg

2nd arg

Return
value

1st arg

1st arg

Monad

2nd arg

Function Monad

return

Maybe Monad (3C) 10 Young Won Lim
1/17/18

instance Monad Maybe where

 return x = Just x

 mx >>= g = case mx of
 Nothing -> Nothing
 Just x -> g x

 type IO t = World -> (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Maybe Monad

ioX >>= f :: IO a -> (a -> IO b) -> IO b

f x

:: Maybe a :: Maybe b

:: a -> IO b

mx my

:: Maybe bmy

>>=

Maybe Monad (3C) 11 Young Won Lim
1/17/18

Maybe Monad

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 mx >>= g = case mx of
 Nothing -> Nothing
 Just x -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mx >>= g (a function with 2 args)

mx :: Maybe a (Maybe monad)
g :: (a -> Maybe b) (function)

x :: a
g x :: Maybe b

Maybe Monad (3C) 12 Young Won Lim
1/17/18

Maybe as a Monad

 f::Int -> Maybe Int
 f 0 = Nothing
 f x = Just x

 g :: Int -> Maybe Int
 g 100 = Nothing
 g x = Just x

https://wiki.haskell.org/Maybe

if x==0 then Nothing
else Just x

if x==100 then Nothing
else Just x

0 ……...…. Nothing

x ………..… Just x

100 …...…. Nothing

x ………..… Just x

0 ……...…. Nothing

100 …...…. Nothing

x ………..… Just x

Maybe Monad (3C) 13 Young Won Lim
1/17/18

Maybe as a Monad

https://wiki.haskell.org/Maybe

0 ……...…. Nothing

x ………..… Just x

100 …...…. Nothing

z ………..… Just z
Just y ……........…. y

Nothing ……Nothing

 f::Int -> Maybe Int g :: Int -> Maybe Int

 h ::Int -> Maybe Int or h' :: Int -> Maybe Int

Int IntMaybe Int Maybe Intflatteningf g

Maybe Monad (3C) 14 Young Won Lim
1/17/18

Maybe as a Monad

 f::Int -> Maybe Int
 f 0 = Nothing
 f x = Just x

 g :: Int -> Maybe Int
 g 100 = Nothing
 g x = Just x

 h ::Int -> Maybe Int
 h x = case f x of
 Just n -> g n
 Nothing -> Nothing

 h' :: Int -> Maybe Int
 h' x = do n <- f x
 g n

 h & h' give the same results
 h 0 = h' 0 = h 100 = h' 100 = Nothing;
 h x = h' x = Just x

https://wiki.haskell.org/Maybe

if x==0 then Nothing
else Just x

if x==100 then Nothing
else Just x

if f x==Nothing then Nothing
else g n

g (f x)
Compact Codes

Maybe Monad (3C) 15 Young Won Lim
1/17/18

Maybe as a Monad

 f 0 = Nothing
 f x = Just x

 g :: Int -> Maybe Int
 g 100 = Nothing
 g x = Just x

 h ::Int -> Maybe Int
 h x = case f x of
 Just n -> g n
 Nothing -> Nothing

 h' :: Int -> Maybe Int
 h' x = do n <- f x
 g n

 h'' ::Int -> Maybe Int
 h'' x = f x >>= g

https://wiki.haskell.org/Maybe

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 mx >>= g = case mx of
 Nothing -> Nothing
 Just x -> g x

 f :: Int -> Maybe Int

 g :: Int -> Maybe Int

 f x :: Maybe Int

Maybe Monad (3C) 16 Young Won Lim
1/17/18

Monad Definition

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 x >> y = x >>= _ -> y

 fail :: String -> m a

 fail msg = error msg

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3C) 17 Young Won Lim
1/17/18

Monad – Bind Operation

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b

>>=

func

>>=am

a

bm

bm

1st arg

2nd arg

Return
value

1st arg

1st arg

m aMonad

2nd arg (a -> m b) Function

return m bMonad

func

>>=am

a

bm

bm

Maybe Monad (3C) 18 Young Won Lim
1/17/18

Maybe Monad

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 mx >>= g = case mx of
 Nothing -> Nothing
 Just x -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mx :: Maybe a (Maybe monad)
g :: (a -> Maybe b) (function)

mx >>= g (a function with 2 args)

g :: (a -> Maybe b)
x :: a
g x :: Maybe b

>>=1st arg

2nd arg

Return
value

1st arg

1st arg

m aMonad

2nd arg (a -> m b) Function

return m bMonad

Maybe Monad (3C) 19 Young Won Lim
1/17/18

Monad Class Function >>= & >>

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 mx >>= g = case mx of
 Nothing -> Nothing
 Just x -> g x

 Nothing

 Just x

g

>>=

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 Maybe b g

>>=

 a

 Maybe a Maybe b

 Nothing

 g x

 x g x

mx g x

Maybe Monad (3C) 20 Young Won Lim
1/17/18

Monad Class Function >>= & >>

Maybe is the monad

return brings a value into it

by wrapping it with Just

(>>=) takes

a value m :: Maybe a

a function g :: a -> Maybe b

if m is Nothing,

there is nothing to do and the result is Nothing.

Otherwise, in the Just x case,

the underlying value x is wrapped in Just

g is applied to x, to give a Maybe b result.

Note that this result may or may not be Nothing,

depending on what g does to x.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 m >>= g = case m of
 Nothing -> Nothing
 Just x -> g x

 Maybe b g

>>=

 a

 Maybe a Maybe b

Maybe Monad (3C) 21 Young Won Lim
1/17/18

Maybe Person Examples

a family database that provides two functions:

 father :: Person -> Maybe Person

 mother :: Person -> Maybe Person

maternalGrandfather :: Person -> Maybe Person

Input the name of someone's father or mother.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 Maybe Person father Person

mother Person Maybe Person

mGfather Person Maybe Person

maternalGrandfather

Maybe Monad (3C) 22 Young Won Lim
1/17/18

Nothing

Maybe Person

● Database
● Query information

when a query is failed

(no relevant information in the database)

Maybe is useful

Maybe returns a Nothing value

to indicate that the lookup failed,

rather than crashing the program.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3C) 23 Young Won Lim
1/17/18

Maternal Grand Father

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
 case mother p of
 Nothing -> Nothing
 Just mom -> father mom

 maternalGrandfather p = mother p >>= father

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mother
 Person

 Maybe Person
father

>>=
 Maybe Person Maybe Person

 Person

p

Maybe Monad (3C) 24 Young Won Lim
1/17/18

Maternal Grand Father

 maternalGrandfather p = mother p >>= father

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mother
 Person

 Maybe Person
father

>>=
 Maybe Person Maybe Person

 Person

p

mother p >>= father
 Maybe Person Maybe Person

Maybe Monad (3C) 25 Young Won Lim
1/17/18

Maternal and Paternal Grand Fathers

 bothGrandfathers :: Person -> Maybe (Person, Person)
 bothGrandfathers p =
 case father p of
 Nothing -> Nothing
 Just dad ->
 case father dad of
 Nothing -> Nothing
 Just gf1 -> -- found first grandfather
 case mother p of
 Nothing -> Nothing
 Just mom ->
 case father mom of
 Nothing -> Nothing
 Just gf2 -> -- found second grandfather
 Just (gf1, gf2)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe Monad (3C) 26 Young Won Lim
1/17/18

Maybe Monad Examples

 bothGrandfathers p =
 father p >>=
 (\dad -> father dad >>=
 (\gf1 -> mother p >>= -- gf1 is only used in the final return
 (\mom -> father mom >>=
 (\gf2 -> return (gf1,gf2)))))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

dad

 p father p return>>= father >>= mother >>= father

dad

gf1

p

mom gf2

mom (gf1,gf2)

Maybe Monad (3C) 27 Young Won Lim
1/17/18

Data Type Definition Monad

data Maybe a = Just a
 | Nothing

a type definition: Maybe a

a parameter of a type variable a,

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Maybe Monad (3C) 28 Young Won Lim
1/17/18

Two Data Constructors

data Maybe a = Just a

 | Nothing

two constructors: Just a and Nothing

a value of Maybe a type must be constructed via either Just or Nothing

there are no other (non-error) possibilities.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3C) 29 Young Won Lim
1/17/18

Just and Nothing Data Constructors

data Maybe a = Just a

 | Nothing

Nothing has no parameter type,

names a constant value

that is a member of type Maybe a for all types a.

Just constructor has a type parameter,

acts like a function from type a to Maybe a,

i.e. it has the type a -> Maybe a

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3C) 30 Young Won Lim
1/17/18

Pattern Matching in Data Constructors

the (data) constructors of a type build a value of that type;

when using that value,

pattern matching can be applied

● Unlike functions, constructors can be used in pattern binding expressions
● case analysis of values that belong to types with more than one constructor.
● need to provide a pattern for each constructor

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3C) 31 Young Won Lim
1/17/18

Pattern Matching in Maybe Monad

case maybeVal of

 Nothing -> "There is nothing!"

 Just val -> "There is a value, and it is " ++ (show val)

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

a pattern for each
constructor

Maybe Monad (3C) 32 Young Won Lim
1/17/18

Maybe as a monad

the type signature IO a looks remarkably similar to Maybe a.
● IO doesn't expose its constructors
● only be "run" by the Haskell runtime system
● a Functor
● a Monad

a Monad is just a special kind of Functor with some extra features

value returning
Monads like IO map types to new types
that represent "computations that result in values"

lifting function
can lift functions into Monad types
via a very fmap-like function called liftM
that turns a regular function into a
"computation that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3C) 33 Young Won Lim
1/17/18

Maybe as a monad

valueless return
Maybe is also a Monad
represents "computations that could fail to return a value"

no explicit check in each step
don’t have to check explicitly for errors after each step.

immediate abort
Because of the way the Monad instance is constructed,
a computation on Maybe values stops as soon as a Nothing is encountered,

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Maybe Monad (3C) 34 Young Won Lim
1/17/18

Monad – List Comprehension Examples

[x*2 | x<-[1..10], odd x]

do
 x <- [1..10]
 if odd x
 then [x*2]
 else []

[1..10] >>= (\x -> if odd x then [x*2] else [])

https://stackoverflow.com/questions/44965/what-is-a-monad

Maybe Monad (3C) 35 Young Won Lim
1/17/18

Monad – I/O Examples

do
 putStrLn "What is your name?"
 name <- getLine
 putStrLn ("Welcome, " ++ name ++ "!")

https://stackoverflow.com/questions/44965/what-is-a-monad

Maybe Monad (3C) 36 Young Won Lim
1/17/18

Monad – A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do
 char '"'
 x <- many (noneOf "\"")
 char '"'
 return (StringValue x)

parseNumber = do
 num <- many1 digit
 return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad

Maybe Monad (3C) 37 Young Won Lim
1/17/18

Monad – Asynchronous Examples

let AsyncHttp(url:string) =
 async { let req = WebRequest.Create(url)
 let! rsp = req.GetResponseAsync()
 use stream = rsp.GetResponseStream()
 use reader = new System.IO.StreamReader(stream)
 return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad

Young Won Lim
1/17/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

