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Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
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https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

https://www.schoolofhaskell.com/user/EFulmer/currying-and-partial-application
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Maybe Monad

a Monad is just a special Functor with extra features

Monads like Maybe 

map types a to a new type Maybe a

that represent "computations that result in values"

● Wrap meaningful values by Just x
● All meaningless values by Nothing

Monads like Maybe, the bind (>>=) operation 

passes meaningful values through Just, while 
Nothing will force the result to always be Nothing. 

https://wiki.haskell.org/Maybe

a  Maybe  a



Maybe Monad (3C) 6 Young Won Lim
1/17/18

An immediate abort 

Maybe is also a Monad

represents “computations that could fail to return a value"

enables an immediate abort 

by a valueless return in the middle of a computation.

enable a whole bunch of computations 

without explicit checking for errors in each step

a computation on Maybe values stops 

as soon as a Nothing is encountered

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

context

semantics

effects
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Maybe  type constructor  

The type constructor is m = Maybe  

    return :: a -> Maybe a

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

    

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

general Monad type class 

    return :: a -> m a

    (>>=)  :: m a -> (a -> m b) -> m b
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Maybe Monad Implementation

The type constructor is m = Maybe  

    return :: a -> Maybe a

    return x  = Just x

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

    mx >>= g = case mx of
                 Nothing -> Nothing
                 Just x  -> g x
  
   mx :: Maybe a
   g :: a -> Maybe b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Maybe Monad - >>= 

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

    

   mx >>= g = case mx of
                    Nothing -> Nothing
                    Just x  -> g x

if there is an underlying value of type a in m, 
we apply g to it, which brings the underlying value back into the Maybe monad.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

>>=1st arg

2nd arg

Return 
value

1st arg

1st arg

Monad 

2nd arg

Function Monad 

return
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instance Monad Maybe where

   return x =  Just x

   mx >>= g = case mx of
                    Nothing -> Nothing
                    Just x  -> g x

    type    IO t    =    World    ->    (t, World) type synonym

https://www.cs.hmc.edu/~adavidso/monads.pdf

Maybe Monad 

ioX >>= f :: IO a -> (a -> IO b) -> IO b

f x

:: Maybe a :: Maybe b

:: a -> IO b

mx my

:: Maybe bmy

>>=
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Maybe Monad 

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

    mx >>= g = case mx of
                    Nothing -> Nothing
                    Just x  -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mx >>= g (a function with 2 args)

mx :: Maybe a     (Maybe monad)
g :: (a -> Maybe b)     (function)

x :: a
g x :: Maybe b 
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Maybe as a Monad  

 f::Int -> Maybe Int
 f 0 = Nothing
 f x = Just x
 
 g :: Int -> Maybe Int
 g 100 = Nothing
 g x     = Just x
 
 

https://wiki.haskell.org/Maybe

if x==0 then Nothing  
else Just x 

if x==100 then Nothing  
else Just x 

0 ……...…. Nothing

x ………..… Just  x

100 …...…. Nothing

x ………..… Just  x

0 ……...…. Nothing

100 …...…. Nothing

x ………..… Just  x
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Maybe as a Monad  

https://wiki.haskell.org/Maybe

0 ……...…. Nothing

x ………..… Just  x

100 …...…. Nothing

z ………..… Just  z
Just  y ……........…. y

Nothing ……Nothing

 f::Int -> Maybe Int  g :: Int -> Maybe Int

 h ::Int -> Maybe Int  or  h' :: Int -> Maybe Int

Int IntMaybe Int Maybe Intflatteningf g
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Maybe as a Monad  

 f::Int -> Maybe Int
 f 0 = Nothing
 f x = Just x
 
 g :: Int -> Maybe Int
 g 100 = Nothing
 g x     = Just x
 
 h ::Int -> Maybe Int
 h x = case f x of
              Just n -> g n
              Nothing -> Nothing
 
 h' :: Int -> Maybe Int
 h' x = do n <- f x
                g n

 h & h' give the same results
 h 0 = h' 0 =  h 100 = h' 100  = Nothing;
 h x = h' x = Just x
 

https://wiki.haskell.org/Maybe

if x==0 then Nothing  
else Just x 

if x==100 then Nothing  
else Just x 

if f x==Nothing then Nothing  
else g n  

g ( f x) 
Compact Codes
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Maybe as a Monad  

 f 0 = Nothing
 f x = Just x
 
 g :: Int -> Maybe Int
 g 100 = Nothing
 g x     = Just x
 
 h ::Int -> Maybe Int
 h x = case f x of
              Just n -> g n
              Nothing -> Nothing
 
 h' :: Int -> Maybe Int
 h' x = do n <- f x
                g n

 h'' ::Int -> Maybe Int
 h'' x = f x >>= g
 

https://wiki.haskell.org/Maybe

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

    mx >>= g = case mx of
                 Nothing -> Nothing
                 Just x  -> g x

 f :: Int -> Maybe Int

 g :: Int -> Maybe Int

 f x :: Maybe Int



Maybe Monad (3C) 16 Young Won Lim
1/17/18

Monad Definition

class Monad m where  

    return :: a -> m a  

  

    (>>=) :: m a -> (a -> m b) -> m b  

  

    (>>) :: m a -> m b -> m b  

    x >> y = x >>= \_ -> y  

  

    fail :: String -> m a  

    fail msg = error msg  

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Monad – Bind Operation 

class  Monad m  where
    (>>=) :: m a -> (a -> m b) -> m b

>>=

func

>>=am 

a

bm 

bm 

1st arg

2nd arg

Return 
value

1st arg

1st arg

m aMonad 

2nd arg (a -> m b) Function 

return m bMonad 

func

>>=am 

a

bm 

bm 
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Maybe Monad 

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

    mx >>= g = case mx of
                    Nothing -> Nothing
                    Just x  -> g x

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mx :: Maybe a     (Maybe monad)
g :: (a -> Maybe b)     (function)

mx >>= g (a function with 2 args)

g :: (a -> Maybe b)     
x :: a
g x :: Maybe b 

>>=1st arg

2nd arg

Return 
value

1st arg

1st arg

m aMonad 

2nd arg (a -> m b) Function 

return m bMonad 
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Monad Class Function >>= & >> 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

    mx >>= g = case mx of
                    Nothing -> Nothing
                    Just x     -> g x

 Nothing 

 Just x 

g

>>=

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b

 Maybe b g

>>=

 a 

 Maybe a  Maybe b 

 Nothing 

 g x 

 x  g x 

mx  g x 
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Monad Class Function >>= & >> 

Maybe is the monad

return brings a value into it 

by wrapping it with Just

(>>=) takes 

a value  m :: Maybe a 

a function g :: a -> Maybe b 

if m is Nothing, 

there is nothing to do and the result is Nothing. 

Otherwise, in the Just x case, 

the underlying value x is wrapped in Just

g is applied to x, to give a Maybe b result. 

Note that this result may or may not be Nothing, 

depending on what g does to x. 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b
    m >>= g = case m of
                 Nothing -> Nothing
                 Just x  -> g x

 Maybe b g

>>=

 a 

 Maybe a  Maybe b 
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Maybe Person  Examples

a family database that provides two functions:

    father :: Person -> Maybe Person

    mother :: Person -> Maybe Person

maternalGrandfather :: Person -> Maybe Person

Input the name of someone's father or mother. 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

 Maybe Person father Person 

mother Person  Maybe Person 

mGfather Person  Maybe Person 

maternalGrandfather
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Nothing 

Maybe Person

● Database
● Query information 

when a query is failed 

(no relevant information in the database)

Maybe is useful 

Maybe returns a Nothing value 

to indicate that the lookup failed, 

rather than crashing the program.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Maternal Grand Father 

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p =
    case mother p of
        Nothing -> Nothing
        Just mom -> father mom

 maternalGrandfather p = mother p >>= father

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mother
 Person 

 Maybe Person 
father

>>=
 Maybe Person  Maybe Person 

 Person 

p
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Maternal Grand Father 

 maternalGrandfather p = mother p >>= father

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

mother
 Person 

 Maybe Person 
father

>>=
 Maybe Person  Maybe Person 

 Person 

p

mother p >>= father
 Maybe Person  Maybe Person 
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Maternal and Paternal Grand Fathers

    bothGrandfathers :: Person -> Maybe (Person, Person)
    bothGrandfathers p =
        case father p of
            Nothing -> Nothing
            Just dad ->
                case father dad of
                    Nothing -> Nothing
                    Just gf1 ->                          -- found first grandfather
                        case mother p of
                            Nothing -> Nothing
                            Just mom ->
                                case father mom of
                                    Nothing -> Nothing
                                    Just gf2 ->          -- found second grandfather
                                        Just (gf1, gf2)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
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Maybe Monad Examples

    bothGrandfathers p =
       father p >>=
           (\dad -> father dad >>=
               (\gf1 -> mother p >>=   -- gf1 is only used in the final return
                   (\mom -> father mom >>=
                       (\gf2 -> return (gf1,gf2) ))))

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

dad

 p father p return>>= father >>= mother >>= father

dad

gf1

p

mom gf2

mom (gf1,gf2)
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Data Type Definition Monad

data Maybe a = Just a
               | Nothing

a type definition: Maybe a 

a parameter of a type variable a, 

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell
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Two Data Constructors

data Maybe a = Just a

               | Nothing

two constructors:  Just a and Nothing

a value of  Maybe a type must be constructed via either Just or Nothing

there are no other (non-error) possibilities.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Just and Nothing Data Constructors

data Maybe a = Just a

               | Nothing

Nothing has no parameter type, 

names a constant value 

that is a member of type Maybe a for all types a. 

Just constructor has a type parameter, 

acts like a function from type a to Maybe a,

i.e. it has the type a -> Maybe a

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Pattern Matching in Data Constructors

the (data) constructors of a type build a value of that type; 

when using that value, 

pattern matching can be applied 

● Unlike functions, constructors can be used in pattern binding expressions
● case analysis of values that belong to types with more than one constructor. 
● need to provide a pattern for each constructor

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Pattern Matching in Maybe Monad

case maybeVal of

    Nothing   -> "There is nothing!"

    Just val    -> "There is a value, and it is " ++ (show val)

  

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

a pattern for each 
constructor
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Maybe as a monad

the type signature IO a looks remarkably similar to Maybe a. 
● IO doesn't expose its constructors 
● only be "run" by the Haskell runtime system
● a Functor 
● a Monad

a Monad is just a special kind of Functor with some extra features

value returning
Monads like IO map types to new types 
that represent "computations that result in values" 

lifting function
can lift functions into Monad types 
via a very fmap-like function called liftM 
that turns a regular function into a 
"computation that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Maybe as a monad

valueless return 
Maybe is also a Monad
represents "computations that could fail to return a value"

no explicit check in each step
don’t have to check explicitly for errors after each step. 

immediate abort 
Because of the way the Monad instance is constructed, 
a computation on Maybe values stops as soon as a Nothing is encountered, 

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell
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Monad – List Comprehension Examples

[x*2 | x<-[1..10], odd x]

do
   x <- [1..10]
   if odd x 
       then [x*2] 
       else []

[1..10] >>= (\x -> if odd x then [x*2] else [])

https://stackoverflow.com/questions/44965/what-is-a-monad
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Monad – I/O Examples

do
   putStrLn "What is your name?"
   name <- getLine
   putStrLn ("Welcome, " ++ name ++ "!")

https://stackoverflow.com/questions/44965/what-is-a-monad
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Monad – A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do
        char '"'
        x <- many (noneOf "\"")
        char '"'
        return (StringValue x)

parseNumber = do
    num <- many1 digit
    return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad
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Monad – Asynchronous Examples

let AsyncHttp(url:string) =
    async {  let req = WebRequest.Create(url)
             let! rsp = req.GetResponseAsync()
             use stream = rsp.GetResponseStream()
             use reader = new System.IO.StreamReader(stream)
             return reader.ReadToEnd() }

https://stackoverflow.com/questions/44965/what-is-a-monad
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