
Young Won Lim
6/22/24

OpenMP Synchronization (5A)



Young Won Lim
6/22/24

 Copyright (c)  2024  - 2016   Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


OpenMP 
Synchronization  (5A) 3 Young Won Lim

6/22/24

Based on

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf

https://www.openmp.org/wp-content/uploads/OpenMP-4.0-C.pdf


OpenMP 
Synchronization  (5A) 4 Young Won Lim

6/22/24

Synchronization I

• Threads communicate through shared variables.

Uncoordinated access of these variables can lead to

undesired effects.

– E.g. two threads update (write) a shared variable in the

same step of execution, the result is dependent on the

way this variable is accessed. This is called a race

condition.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (1)



OpenMP 
Synchronization  (5A) 5 Young Won Lim

6/22/24

• To prevent race condition, the access to shared

variables must be synchronized.

• Synchronization can be time consuming.

• The barrier directive is set to synchronize all threads.

All threads wait at the barrier until all of them have

arrived.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (2)



OpenMP 
Synchronization  (5A) 6 Young Won Lim

6/22/24

Synchronization II

• Synchronization imposes order constraints and is

used to protect access to shared data

• High level synchronization:

– critical

– atomic

– barrier

– ordered

• Low level synchronization

– flush

– locks (both simple and nested)

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Synchronization (3)



OpenMP 
Synchronization  (5A) 7 Young Won Lim

6/22/24

Synchronization: critical

• Mutual exclusion: only one thread at a time can enter a critical 

region.

{

double res;

#pragma omp parallel

{

double B;

int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id; i<niters; i+=nthrds){

B = some_work(i);

#pragma omp critical

consume(B,res);

}

}

} https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (1)



OpenMP 
Synchronization  (5A) 8 Young Won Lim

6/22/24

Threads wait here: only one thread

at a time calls consume(). So this is

a piece of sequential code inside

the for loop.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (2)



OpenMP 
Synchronization  (5A) 9 Young Won Lim

6/22/24

Sum = 0;

#pragma omp parallel shared(n,a,sum) private(TID,sumLocal)

{

TID = omp_get_thread_num();

sumLocal = 0;

#pragma omp for

for (i=0; I<n; i++) 

sumLocal += a[i];

#pragma omp critical (update_sum)

{

sum += sumLocal;

printf(“TID=%d: sumLocal=%d sum=%d\n”, TID, sumLocal, sum)

}

} /* --- End of parallel region --- */

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (3)



OpenMP 
Synchronization  (5A) 10 Young Won Lim

6/22/24

{

…

#pragma omp parallel

{

#pragma omp for nowait shared(best_cost)

for(i=0; i<N; i++){

int my_cost;

my_cost = estimate(i);

#pragma omp critical

{

if(best_cost < my_cost)

best_cost = my_cost;

}

}

}

}

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Critical (4)

Only one thread at a time

executes if() statement. This

ensures mutual exclusion when

accessing shared data.

Without critical, this will set up

a race condition, in which the

computation exhibits

nondeterministic behavior

when performed by multiple

threads accessing a shared

variable



OpenMP 
Synchronization  (5A) 11 Young Won Lim

6/22/24

atomic provides mutual exclusion but only applies to the

load/update of a memory location.

• This is a lightweight, special form of a critical section.

• It is applied only to the (single) assignment statement that

immediately follows it.

26

{

…

#pragma omp parallel

{

double tmp, B;

….

#pragma omp atomic

{

X+=tmp;

}

}

} https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Atomic (1)

Atomic only protects the update of X.



OpenMP 
Synchronization  (5A) 12 Young Won Lim

6/22/24

Int ic, I, n;

Ic = 0;

#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++, I<n)

{

#pragma omp atomic

ic = ic + 1;

}

“ic” is a counter. The atomic construct ensures that no updates

are lost when multiple threads are updating a counter value.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Atomic (2)

Atomic only protects the update of X.



OpenMP 
Synchronization  (5A) 13 Young Won Lim

6/22/24

• Atomic construct may only be used together with an expression

statement with one of operations: +, *, -, /, &, ^, |, <<, >>

Int ic, I, n ;

Ic=0;

#pragma omp parallel shared(n,ic) private(i)

for (i=0; i++, I<n)

{

#pragma omp atomic

ic = ic + bigfunc();

}

The atomic construct does not prevent multiple threads

from executing the function bigfunc() at the same time.

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Atomic (3)

Atomic only protects the update of X.



OpenMP 
Synchronization  (5A) 14 Young Won Lim

6/22/24

Suppose each of the following two loops are run in parallel

over i, this may give a wrong answer.

29

for(i= 0; i<N; i++)

a[i] = b[i] + c[i];

for(i= 0; i<N; i++)

d[i] = a[i] + b[i];

There could be a data race in a[].

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (1)

Atomic only protects the update of X.



OpenMP 
Synchronization  (5A) 15 Young Won Lim

6/22/24

for(i= 0; i<N; i++)

a[i] = b[i] + c[i];

for(i= 0; i<N; i++)

d[i] = a[i] + b[i];

wait

barrier

To avoid race condition:

• NEED: All threads wait at the barrier point and only continue

when all threads have reached the barrier point.

Barrier syntax:

• #pragma omp barrier

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (2)

Atomic only protects the update of X.



OpenMP 
Synchronization  (5A) 16 Young Won Lim

6/22/24

barrier: each threads waits until all threads arrive

31

#pragma omp parallel shared (A,B,C) private (id)

{

id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for

for(i=0; i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++) {B[i]=big_calc2(i,C);}

A[id]=big_calc4(id);

}

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (3)

Implicit barrier at

the end of for

Construct

No implicit barrier

due to nowait

Implicit barrier at the end of

a parallel region



OpenMP 
Synchronization  (5A) 17 Young Won Lim

6/22/24

When to Use Barriers

• If data is updated asynchronously and data

integrity is at risk

• Examples:

– Between parts in the code that read and write the

same section of memory

– After one timestep/iteration in a numerical solver

• Barriers are expensive and also may not scale to a

large number of processors

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-11-02.pdf

Barrier (4)

Implicit barrier at

the end of for

Construct

No implicit barrier

due to nowait

Implicit barrier at the end of

a parallel region



Young Won Lim
6/22/24

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

