
Young Won Lim
6/21/20

Monad P3 : Strict and Lazy Package Examples (2D)

Young Won Lim
6/21/20

 Copyright (c) 2016 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Strict and Lazy Package
Examples (1D)

3 Young Won Lim
6/21/20

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Strict and Lazy Package
Examples (1D)

4 Young Won Lim
6/21/20

Package Examples

Strict and Lazy Package
Examples (1D)

5 Young Won Lim
6/21/20

Monad operations (bind and return)

have to be non-strict in fact, always!

However other operations can be

specific to each monad.

For some monad instances are strict (like IO),

and others are non-strict (like []).

https://wiki.haskell.org/What_a_Monad_is_not#Monads_are_not_about_strictness

Monad operations and strictness

Strict and Lazy Package
Examples (1D)

6 Young Won Lim
6/21/20

Some monads have multiple flavours, like State.

Control.Monad.Trans.State.Strict

Control.Monad.Trans.State.Lazy

the following example produces a usable result

when Lazy version is used

runState (sequence . repeat $ state (\x -> (x,x+1))) 0

https://wiki.haskell.org/What_a_Monad_is_not#Monads_are_not_about_strictness

Strict and lazy versions of a package

Strict and Lazy Package
Examples (1D)

7 Young Won Lim
6/21/20

mtl (or its underlying transformers) package provides

two types of State monad;

Control.Monad.State.Strict

Control.Monad.State.Lazy

Control.Monad.State are the re-export of

Control.Monad.State.Lazy.

https://kseo.github.io/posts/2016-12-28-lazy-vs-strict-state-monad.html

Strict vs Lazy State Monads

Strict and Lazy Package
Examples (1D)

8 Young Won Lim
6/21/20

Example A)

main = print $ take 5 (evalState foo ())

Example B)

evalState (sequence $ repeat $ do { n <- get; put (n*2); return n }) 1

Example C)

runState (sequence . repeat $ state (\x -> (x,x+1))) 0

Example D)

plus n x = execState (sequence $ replicate n tick) x

https://kseo.github.io/posts/2016-12-28-lazy-vs-strict-state-monad.html

Strict vs Lazy Package Examples

Strict and Lazy Package
Examples (1D)

9 Young Won Lim
6/21/20

import Control.Monad.State.Lazy -- [1,2,3,4,5]

import Control.Monad.State.Strict -- hangs up

foo :: State () [Int]

foo = traverse pure [1..]

main = print $ take 5 (evalState foo ())

pure [1..]

return [1..]

traverse [1,2,3,4,5,6,7,8,9,10,..]

https://kseo.github.io/posts/2016-12-28-lazy-vs-strict-state-monad.html

Example A print $ take 5 (1)

Strict and Lazy Package
Examples (1D)

10 Young Won Lim
6/21/20

Import Control.Monad.State.Strict

In the strict version,

the pattern matches on the pair

forces its evaluation.

(evalState foo ())

So traverse pure [1..] never returns

until its evaluation is finished.

because an infinite list is involved

https://kseo.github.io/posts/2016-12-28-lazy-vs-strict-state-monad.html

Example A print $ take 5 (2)

Import Control.Monad.State.Strict

foo :: State () [Int]

foo = traverse pure [1..]

main = print $ take 5 (evalState foo ())

Strict and Lazy Package
Examples (1D)

11 Young Won Lim
6/21/20

Import Control.Monad.State.Lazy

avoids this evaluation of the pair

(evalState foo ()) evaluation is forced later

when the pair is actually needed.

In this way, we can manipulate infinite lists

in a lazy state monad.

https://kseo.github.io/posts/2016-12-28-lazy-vs-strict-state-monad.html

Example A print $ take 5 (3)

Import Control.Monad.State.Lazy

foo :: State () [Int]

foo = traverse pure [1..]

main = print $ take 5 (evalState foo ())

Strict and Lazy Package
Examples (1D)

12 Young Won Lim
6/21/20

This does not imply that we should always

prefer the lazy version of state monad

because the lazy state monad

often builds up large thunks

and causes space leaks.

https://kseo.github.io/posts/2016-12-28-lazy-vs-strict-state-monad.html

Example A print $ take 5 (4)

Strict and Lazy Package
Examples (1D)

13 Young Won Lim
6/21/20

evalState (sequence $ repeat $ do { n <- get; put (n*2); return n }) 1

Control.Monad.Trans.State.Lazy

sequencing of computations is lazy,

so that for example the following produces a usable result:

Control.Monad.Trans.State.Strict

sequencing of computations is strict

but computations are not strict in the state

unless you force it with 'seq' or the like

repeat → an infinite list

http://hackage.haskell.org/package/transformers-0.5.6.2/src/Control/Monad/Trans/State/Lazy.hs

Example B repeat $ do (1)

lazy sequencing of computations

strict sequencing of computations

Strict and Lazy Package
Examples (1D)

14 Young Won Lim
6/21/20

evalState (sequence $ repeat $ do { n <- get; put (n*2); return n }) 1

evalState (sequence (

do { 1 <- get; put (1*2); return 1 } 1 > (1, 2) non-strict computation

do { 2 <- get; put (2*2); return 2 } 2 -> (2, 4) non-strict computation

do { 4 <- get; put (4*2); return 4 } 4 -> (4, 8) non-strict computation

… … …

)) 1

http://hackage.haskell.org/package/transformers-0.5.6.2/src/Control/Monad/Trans/State/Lazy.hs

Example B repeat $ do (2)

lazy sequencing of computations

OK

strict sequencing of computations

Not OK

Strict and Lazy Package
Examples (1D)

15 Young Won Lim
6/21/20

Control.Monad.Trans.State.Strict

Control.Monad.Trans.State.Lazy

runState (sequence . repeat $ state (\x -> (x,x+1))) 0

https://wiki.haskell.org/What_a_Monad_is_not#Monads_are_not_about_strictness

Example C repeat $ state (1)

Strict and Lazy Package
Examples (1D)

16 Young Won Lim
6/21/20

runState (sequence . repeat $ state (\x -> (x,x+1))) 0

runState (sequence (

state (\x -> (x,x+1)) 0 -> (0, 1) non-strict computation

state (\x -> (x,x+1)) 1 -> (1, 2) non-strict computation

state (\x -> (x,x+1)) 2 -> (2, 3) non-strict computation

… … …

)) 0

state :: (s -> (a, s)) -> m a

https://wiki.haskell.org/What_a_Monad_is_not#Monads_are_not_about_strictness

Example C repeat $ state (2)

lazy sequencing of computations

OK

strict sequencing of computations

Not OK

Strict and Lazy Package
Examples (1D)

17 Young Won Lim
6/21/20

A function to increment a counter.

tick :: State Int Int

tick = do n <- get

 put (n+1)

 return n

plusOne :: Int -> Int

plusOne n = execState tick n

plus :: Int -> Int -> Int

plus n x = execState (sequence $ replicate n tick) x

http://hackage.haskell.org/package/transformers-0.5.6.2/src/Control/Monad/Trans/State/Lazy.hs

Example D sequence $ replicate n (1)

computations are non-strict

works in both versions

Control.Monad.Trans.State.Lazy
Control.Monad.Trans.State.Strict

Strict and Lazy Package
Examples (1D)

18 Young Won Lim
6/21/20

plus n x = execState (sequence $ replicate 3 tick) 0

execState (sequence (

tick 0 -> (0, 1)

tick 1 -> (1, 2)

tick 2 -> (2, 3)

)) 0

https://wiki.haskell.org/What_a_Monad_is_not#Monads_are_not_about_strictness

Example D sequence $ replicate n (2)

Strict and Lazy Package
Examples (1D)

19 Young Won Lim
6/21/20

traverse turns things inside a Traversable into t a

a Traversable of things inside an Applicative, f (t b)

given a function that makes Applicatives out of things. (a -> f b)

Inside a Tranversable t a

Inside an Applicative f (t b)

traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)

https://stackoverflow.com/questions/7460809/can-someone-explain-the-traverse-function-in-haskell

Traverse

Strict and Lazy Package
Examples (1D)

20 Young Won Lim
6/21/20

Let's use Maybe as Applicative

and list as Traversable.

the transformation function: half :: a -> f b

half x = if even x then Just (x `div` 2) else Nothing

traverse half [2,4..10] Just [1,2,3,4,5]

traverse half [1..10] Nothing

traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)

https://stackoverflow.com/questions/7460809/can-someone-explain-the-traverse-function-in-haskell

Traverse example (1)

Strict and Lazy Package
Examples (1D)

21 Young Won Lim
6/21/20

So if a number is even, we get half of it (inside a Just),

else we get Nothing. If everything goes "well", it looks like this:

traverse half [2,4..10] [2,4,6,8,10]

-- Just [1,2,3,4,5]

But...

traverse half [1..10] [1,2,3,4,5,6,7,8,9,10]

-- Nothing

half x = if even x then Just (x `div` 2) else Nothing

https://stackoverflow.com/questions/7460809/can-someone-explain-the-traverse-function-in-haskell

Traverse example (2)

Strict and Lazy Package
Examples (1D)

22 Young Won Lim
6/21/20

the <*> function is used to build the result,

and when one of the arguments is Nothing,

we get Nothing back.

(<*>) :: f (a -> b) -> f a -> f b

(<*>) simply represents function application

ap :: (Monad m) => m (a -> b) -> m a -> m b

https://stackoverflow.com/questions/7460809/can-someone-explain-the-traverse-function-in-haskell

Traverse example (3)

Strict and Lazy Package
Examples (1D)

23 Young Won Lim
6/21/20

rep x = replicate x x

This function generates a list of length x with the content x, e.g.

rep 3 = [3,3,3]. What is the result of traverse rep [1..3]?

We get the partial results of [1], [2,2] and [3,3,3] using rep.

Now the semantics of lists as Applicatives is take all combinations,

(+) <$> [10,20] <*> [3,4] is [13,14,23,24].

(10, 3), (10, 4), (20, 3), (20, 4)

https://stackoverflow.com/questions/7460809/can-someone-explain-the-traverse-function-in-haskell

Traverse of Replicate example (1)

Strict and Lazy Package
Examples (1D)

24 Young Won Lim
6/21/20

"All combinations" of [1] and [2,2] are two times [1,2].

[1,2], [1,2]

All combinations of two times [1,2] and [3,3,3] are six times [1,2,3].

[1,2], [1,2], [3, 3, 3]

[1], [1, 2, 3], [1, 2, 3], [1, 2, 3] [1, 2, 3], [1, 2, 3], [1, 2, 3]

[2], [1, 2, 3], [1, 2, 3], [1, 2, 3] [1, 2, 3], [1, 2, 3], [1, 2, 3]

So we have:

traverse rep [1..3]

--[[1,2,3],[1,2,3],[1,2,3],[1,2,3],[1,2,3],[1,2,3]]

https://stackoverflow.com/questions/7460809/can-someone-explain-the-traverse-function-in-haskell

Traverse of Replicate example (2)

Strict and Lazy Package
Examples (1D)

25 Young Won Lim
6/21/20

repeat :: a -> [a]

it creates an infinite list where all items are the first argument

Input: take 4 (repeat 3)

Output: [3,3,3,3]

Input: take 6 (repeat 'A')

Output: "AAAAAA"

Input: take 6 (repeat "A")

Output: ["A","A","A","A","A","A"]

https://wiki.haskell.org/What_a_Monad_is_not#Monads_are_not_about_strictness

repeat

Strict and Lazy Package
Examples (1D)

26 Young Won Lim
6/21/20

The sequence function

takes a list of monadic computations, [m a]

executes each one in turn and m a

returns a list of the results. m [a]

If any of the computations fail,

then the whole function fails:

sequence :: Monad m ==> [m a] -> m [a]

https://wiki.haskell.org/All_About_Monads

sequence Function

Strict and Lazy Package
Examples (1D)

27 Young Won Lim
6/21/20

sequence :: Monad m ==> [m a] -> m [a]

sequence = foldr mcons (return [])

 where mcons p q = p >>= \x -> q >>= \y -> return (x:y)

 (>>=) :: m a -> (a -> m b) -> m b

p :: m a x :: a

q :: m b y :: b

x -> q :: a -> m b

y -> return (x:y) :: b -> m [b] or m [a]

https://wiki.haskell.org/All_About_Monads

sequence Function Definition 1

Strict and Lazy Package
Examples (1D)

28 Young Won Lim
6/21/20

sequence :: [m a] -> m [a]

sequence [] = return []

sequence (m1:ms) =

m1 >>= (\x -> sequence ms >>= (\xs -> return $ x:xs))

m1 : m a

ms : [m a]

x :: a

x -> sequence ms :: a -> m [a]

xs :: [a]

xs -> return $ x:xs :: a -> m [a]

https://www.reddit.com/r/haskellquestions/comments/6xk5hv/the_sequence_function/

sequence Function Definition 2

Strict and Lazy Package
Examples (1D)

29 Young Won Lim
6/21/20

sequence [] = return []

sequence (m1:ms) = do

 x <- m1

 xs <- sequence ms

 return (x:xs)

x :: a m1 :: m a

xs :: [a] ms :: [m a]

https://stackoverflow.com/questions/5299295/why-does-application-of-sequence-on-list-of-lists-lead-to-computation-of-its-c

sequence Function Definition 3

Strict and Lazy Package
Examples (1D)

30 Young Won Lim
6/21/20

The sequence_ function (notice the underscore)

has the same behavior as sequence

but does not return a list of results.

It is useful when only the side effects

of the monadic computations are important.

sequence_ :: Monad m ==> [m a] -> m ()

sequence_ = foldr (>>) (return ())

https://wiki.haskell.org/All_About_Monads

sequence_ Function

Strict and Lazy Package
Examples (1D)

31 Young Won Lim
6/21/20

The Maybe Monad instance

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= f = Nothing

(Just x) >>= f = f x

sequence function definition

sequence :: [m a] -> m [a]

sequence [] = return []

sequence (m1:ms) =

m1 >>= (\x -> sequence ms >>= (\xs -> return $ x:xs))

https://www.reddit.com/r/haskellquestions/comments/6xk5hv/the_sequence_function/

sequence Function v.s. Maybe Instance Definitions

Strict and Lazy Package
Examples (1D)

32 Young Won Lim
6/21/20

[] in the definition of sequence

the first value in the list is Nothing,

so Haskell discards the lambda function

(which is also where the rest of the list would be evaluated)

and returns Nothing, because the right-hand side of (>>=)'s

Nothing pattern doesn't include f at all.

sequence [] = return []

Nothing >>= f = Nothing

https://www.reddit.com/r/haskellquestions/comments/6xk5hv/the_sequence_function/

[] in sequence v.s. Nothing in Maybe

Strict and Lazy Package
Examples (1D)

33 Young Won Lim
6/21/20

The seq function is the most basic method

of introducing strictness to a Haskell program.

seq :: a -> b -> b

takes two arguments of any type,

and returns the second.

magically strict in the first argument.

 ⊥ `seq` b = ⊥

a `seq` b = b

https://wiki.haskell.org/Seq

seq – 2 arguments

Strict and Lazy Package
Examples (1D)

34 Young Won Lim
6/21/20

seq doesn't evaluate anything

just by virtue of existing in the source file,

all it does is introduce an artificial data dependency

when the result of seq is evaluated,

the first argument must also be ‘sort of’ evaluated.

suppose x :: Integer, then seq x b behaves essentially like

if x == 0 then b else b

unconditionally equal to b, but forcing x along the way.

x `seq` x is completely redundant,

and always has exactly the same effect as just writing x.

https://wiki.haskell.org/Seq

seq – data dependency and evaluation

Strict and Lazy Package
Examples (1D)

35 Young Won Lim
6/21/20

Strictly speaking, the two equations of seq are all it must satisfy,

 ⊥ `seq` b = ⊥

a `seq` b = b

if the compiler can statically prove pattern matching

that the first argument is not ⊥ , or `seq` b = ⊥ ⊥

that its second argument is ⊥ , a `seq` = ⊥ ⊥

it doesn't have to evaluate anything to meet its obligations.

In practice, this almost never happens

However, it is the case that evaluating b and then a,

then returning b is a perfectly legitimate thing to do;

https://wiki.haskell.org/Seq

seq – returning b

Strict and Lazy Package
Examples (1D)

36 Young Won Lim
6/21/20

-- | Embed a simple state action into the monad.

state :: (s -> (a, s)) -> m a

state f = do

 s <- get

 let ~(a, s') = f s

 put s'

 return a

f :: s -> (a, s)

f s :: (a, s)

https://wiki.haskell.org/What_a_Monad_is_not#Monads_are_not_about_strictness

state method of State monad

Strict and Lazy Package
Examples (1D)

37 Young Won Lim
6/21/20

foo ~(Just x) = "hello"

main = putStrLn $ foo Nothing

This uses an irrefutable pattern (the ~ part).

Irrefutable patterns always match,

so this always prints hello.

https://stackoverflow.com/questions/6711870/what-causes-irrefutable-pattern-failed-for-pattern-and-what-does-it-mean

Irrefutable pattern ~(…)

Strict and Lazy Package
Examples (1D)

38 Young Won Lim
6/21/20

foo ~(Just x) = x

main = putStrLn $ foo Nothing

Now, the pattern still matched,

but when we tried to use x

when it wasn't actually there

we got an irrefutable pattern match error:

Irr.hs: /tmp/Irr.hs:2:1-17:

Irrefutable pattern failed for pattern (Data.Maybe.Just x)

https://stackoverflow.com/questions/6711870/what-causes-irrefutable-pattern-failed-for-pattern-and-what-does-it-mean

Irrefutable pattern match error

Strict and Lazy Package
Examples (1D)

39 Young Won Lim
6/21/20

foo (Just x) = x

main = putStrLn $ foo Nothing

This is subtly distinct from the error you get

when there's no matching pattern:

Irr.hs: /tmp/Irr.hs:2:1-16: Non-exhaustive patterns in function foo

https://stackoverflow.com/questions/6711870/what-causes-irrefutable-pattern-failed-for-pattern-and-what-does-it-mean

No matching pattern

Strict and Lazy Package
Examples (1D)

40 Young Won Lim
6/21/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40

