Redundant CORDIC Timmermann (C)

20170209

Termination Algorithms Modified CORDIC CSD (Canonic Sign Digit) Encoding Booth Encoding

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Low Latency Time CORDIC Algorithms - Timmermann (1992) Redundant and on-line CORDIC - Ercegovac & Lang (1990)
Redundant and on-line CORDIC - Ercegovac & Lang (1990)

CSD (Canonic Signed Digit) like Booth encoding (not modified Booth) all non-zero digits are separated by zeros \Rightarrow $\sigma_i \sigma_{i+} = 0$ ·1-rm 0. = 0 - 1 = 0 (·0=0 ī·0=0 Iterative Reduction of 1-runs $\sigma_i \sigma_{i+1} = 0$ 0 T 6 0 0 1 0 1 Unique encoding Ο

$$T_{WO} \quad successive \quad iteration \quad steps$$

$$\begin{array}{c} x_{in} = x_{i} - m \ o_{1} \left(2^{-d(m_{i},i)} \right) y_{i} \\ y_{i+1} = y_{i} + o_{2} \left(2^{-d(m_{i},i)} \right) x_{i} \\ y_{i+1} = z_{i} - o_{2} \ \alpha_{m,i} \end{array}$$

$$(i) \quad \left(x_{in} \\ y_{im} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i} 2^{i} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i+1} \\ 0_{i+1} 2^{i+1} \\ 1 \end{array} \right) \left(\frac{x_{i}}{y_{i}} \right) = \left(1 - m \ o_{1} 2^{i} + \frac{x_{i}}{y_{i}} 2^{-i+1} \\ 1 - m \ o_{1} 0_{i+1} 2^{-i+1} \\ 0_{i+1} 2^{i+1} \\ 1 - m \ o_{1} 0_{i+1} 2^{-i+1} \\ 1 + 0_{i+1} 2^{-i+1}$$

$$\overline{\mathfrak{s}_{i}} \neq 0 \qquad \overline{\mathfrak{s}_{i}} \overline{\mathfrak{s}_{i,i}} = 0 \qquad \operatorname{property} \quad \operatorname{of} \quad \operatorname{Booth} \quad \operatorname{en(oding}$$

$$\begin{bmatrix} \chi_{i,i} \\ y_{i,j} \end{bmatrix} = \begin{bmatrix} 1 & -m \, \mathfrak{s}_{i} 2^{-i} \\ \mathfrak{s}_{i} 2^{i} \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\begin{bmatrix} \chi_{i,i} \\ y_{i,j} \end{bmatrix} - \begin{bmatrix} 1 -m \, \overline{\mathfrak{s}_{i}} \mathfrak{s}_{i} 2^{-2i-1} \\ \mathfrak{s}_{i} 2^{-i} + \mathfrak{s}_{i+1} 2^{-i} \end{bmatrix} & 1 - m \, \mathfrak{s}_{i} \mathfrak{s}_{i} 2^{-2i-1} \\ \begin{bmatrix} \chi_{i} \\ y_{i,j} \end{bmatrix} = \begin{bmatrix} 1 & -m \, \mathfrak{s}_{i} \mathfrak{s}_{i+1} 2^{-i+1} \\ \mathfrak{s}_{i} \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\begin{bmatrix} \chi_{i,i} \\ y_{i,j} \end{bmatrix} = \begin{bmatrix} 1 & -m \, \mathfrak{s}_{i} \mathfrak{s}_{i+1} 2^{-i+1} \\ \mathfrak{s}_{i+1} 2^{-i+1} \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\begin{bmatrix} \chi_{i,i} \\ y_{i+2} \end{bmatrix} = \begin{bmatrix} 1 & -m \, \mathfrak{s}_{i} \mathfrak{s}_{i+1} 2^{-i+1} \\ \mathfrak{s}_{i+1} 2^{-i+1} \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{i} \end{bmatrix}$$

$$\begin{bmatrix} \chi_{i,i} \\ \chi_{i,i} \\ \chi_{i,i} \end{bmatrix} = \begin{bmatrix} \chi_{i} & -m \, \mathfrak{s}_{i+1} 2^{-i+1} \\ \chi_{i} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \mathfrak{s}_{i} 2^{-i} + \mathfrak{s}_{i+1} 2^{-i+1} \\ \chi_{i} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -m \, \mathfrak{s}_{i+2} 2^{-i+1} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \\ \chi_{i+2} & -\chi_{i+2} & -\chi_{i+2} \end{bmatrix} = \begin{bmatrix} \chi_{i+2} & -\chi_{i+2} & -\chi$$

m=1, S(m,i)=i

CSD

Cond	l€ o≤i	$\leq \frac{1}{4}(\eta - 3)$				
X _{i+1}	$= \chi_i -$	$\sigma_i 2^{-i} y_i$	Х _{ін}	$= \chi_i -$	$- o_i 2^{-i} y_i$	
પુરમ	= 9i +	$\sigma_i 2^{-i} x_i$	Yc+	= 9i -	+ ^o i 2 ⁻ⁱ Xi	
Zi+1	= Zi -	$\sigma_i tan^{-1}(2^{-i})$	Zi+1	= Zi -	$- \frac{\sigma_i}{1} \tan^{-1}(2^{-i})$	

	Cond	$(\mathbf{I}) \frac{1}{4} (n-3) < i \leq \frac{1}{2} (n+1)$	
(o _i t	0	$\sigma_i \neq 0$
	Х _{ін}	$= \chi_i - \sigma_i \lambda^{-i} y_i$	$\chi_{i+2} = \chi_i - m\sigma_i 2^{-i} y_i - m\sigma_{i+1} 2^{-i-1} y_i$
	Усн	$= \Im_i + \stackrel{\sigma_i}{\sim} 2^{-i} \chi_i$	$y_{i+2} = y_i + \frac{\sigma_i}{2} 2^{-1} x_i + \frac{\sigma_{i+1}}{2} 2^{-i+1} x_i$
	Zi+1	= $Z_i - O_i \tan^{-1}(2^{-i})$	$Z_{i+2} = Z_i - \sigma_i \alpha_{m,i} - \sigma_{i+1} \alpha_{m,i+1}$
	~i =	0	°i = 0
	I _{i+1}	$= \chi_i + m \cdot 2^{-2i-1} \chi_i$	$\chi_{i+2} = (+ m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \chi_i$
	Усн	$= (y_i) + m 2^{-2i-1} (y_i)$	$\mathcal{Y}_{i+2} = (1 + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \mathcal{Y}_i$
	टोम	= Zi	Zi+1 = Zi

Cond $\overline{m} + \frac{1}{2}(n+1) < i$ $\sigma_{i} \neq \sigma$ $\chi_{i+1} = \chi_{i} - \sigma_{i} \chi^{-i} \chi_{i}$ $\vartheta_{i+1} = \vartheta_{i} + \sigma_{i} \chi^{-i} \chi_{i}$ $\sigma_{i+1} = \vartheta_{i} + \sigma_{i} \chi^{-i} \chi_{i}$ $\sigma_i \neq 0 \text{ or } \sigma_i = 0$ $\begin{aligned} \mathcal{I}_{i+2} &= \mathcal{X}_{i} - m \sigma_{i} 2^{-i} y_{i} - m \sigma_{i+1} 2^{-i-1} y_{i} \\ \mathcal{Y}_{i+2} &= y_{i} + \sigma_{i} 2^{-i} \chi_{i} + \sigma_{i+1} 2^{-i-1} \chi_{i} \end{aligned}$ $\overline{2i+1} = \overline{2i} - \frac{\sigma_i}{2} \tan^{-1}(2^{-i})$ $Z_{i+2} = Z_i - \sigma_i \alpha_{m,i} - \sigma_{i+1} \alpha_{m,i+1}$

c₁ = 0

Х _{ін}	=	<i>X</i> i	
Усн	H	9 i	
Zi+1	u	Zi	

i ← i+1

i ← i+2

Low Latency Time CORDIC Algorithms - Timmerman (1992)

$$\begin{bmatrix} X_{i4} \\ y_{i4} \end{bmatrix} = \begin{bmatrix} 1 & -m & \phi_{i} 2^{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} X_{i} \\ y_{i} \end{bmatrix} \\ \begin{bmatrix} X_{i4} \\ y_{i4} \end{bmatrix} = \begin{bmatrix} 1 - m & \phi_{i} & \phi_{i4} & 2^{i+1} \\ (\phi_{i} & 2^{i} + & \phi_{i4} & 2^{i+1} \end{pmatrix} & 1 - m & \phi_{i} & \phi_{i4} & 2^{i+1} \end{pmatrix} \\ \begin{bmatrix} X_{i1} \\ y_{i42} \end{bmatrix} = \begin{bmatrix} 1 & -m & (\phi_{i} & 2^{i} + & \phi_{i4} & 2^{i+1}) \\ (\phi_{i} & 2^{i} + & \phi_{i4} & 2^{i+1}) & 1 - m & (\phi_{i} & 2^{i} + & \phi_{i4} & 2^{i+1}) \end{bmatrix} \begin{bmatrix} X_{i} \\ y_{i} \end{bmatrix} \\ \begin{bmatrix} X_{i1} \\ y_{i42} \end{bmatrix} = \begin{bmatrix} 1 & -m & (\phi_{i} & 2^{i} + & \phi_{i4} & 2^{i+1}) \\ (\phi_{i} & 2^{i} + & \phi_{i4} & 2^{i+1}) & 1 \end{bmatrix} \begin{bmatrix} X_{i} \\ y_{i} \end{bmatrix} \\ \\ X_{i42} = (\phi_{i} & 2^{i} + & \phi_{i41} & 2^{i+1}) X_{i} + & y_{i} \end{bmatrix} \\ \\ X_{i42} = (\phi_{i} & 2^{i} + & \phi_{i41} & 2^{i+1}) X_{i} + & y_{i} \end{bmatrix} \\ \\ X_{i42} = y_{i} + & \phi_{i} & 2^{i} & X_{i} + & \phi_{i+1} & 2^{i+1} \\ y_{i42} = y_{i} + & \phi_{i} & 2^{i} & X_{i} + & \phi_{i+1} & 2^{i+1} \\ y_{i42} = y_{i} + & \phi_{i} & 2^{i} & X_{i} + & \phi_{i+1} & 2^{i+1} \\ \\ X_{i42} = y_{i} + & \phi_{i} & 2^{i} & X_{i} + & \phi_{i+1} & 2^{i+1} \\ y_{i43} = y_{i} + & \phi_{i} & 2^{i} & X_{i} \end{bmatrix} \\$$

Cond $\boxed{1}$ $\frac{1}{4}$ $(n-3) < i \leq \frac{1}{2}$ (n+1)parallel $\sigma_i = 0$ $\begin{array}{c|c} \chi_{i+1} = (| + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \chi_i \\ \chi_{i+1} = (| + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \chi_i \\ \chi_{i+2} = (| + m \cdot 2^{-2i-3} + m \cdot 2^{-2i-1}) \chi_i \end{array}$ Zi+1 = Zi ~i = 0 - post phone this computation until the whole iteration process has been completed -Use a Wallace tree to implement this in parallel $\sigma_i \neq o$ - executes a rotation by either am, i on am, i+1 - multiplex the different shifts, 4-to-2 cell

Cond (1)
$$\frac{1}{2}$$
 (n+1) < i
-analogous to the termination algorithm
- but improved design regularity
: tree structure are not becessary
- the original iterations and paired
always two subsequent iterations are
merged into a new single iteration
- a q-to-2 addee cell (Xi, bi)
0 3-to-2 addee cell (2i)
a 3:1 multiplexen
- 0 0
0 1
1 0

Termination Algorithm quit the iteration process as early as possible termination algorithm - T.C. Chen IBM Journal of Research and Development 1912 Automatic computation of exponentials lugarithms, ratios, and square roots - Timmermann Modified CORDIC algorithms the 2nd half of the niterations - can be substituted by 2 multications in panallel A fully parallel M-bit wallace tree multiplier - 2 log₂ (n) FA time units algorithm + prediction + termination $(n+1) + 2\log_2(\frac{n}{2}) + \log_2(n) = n + 3\log_2(n) - 1$

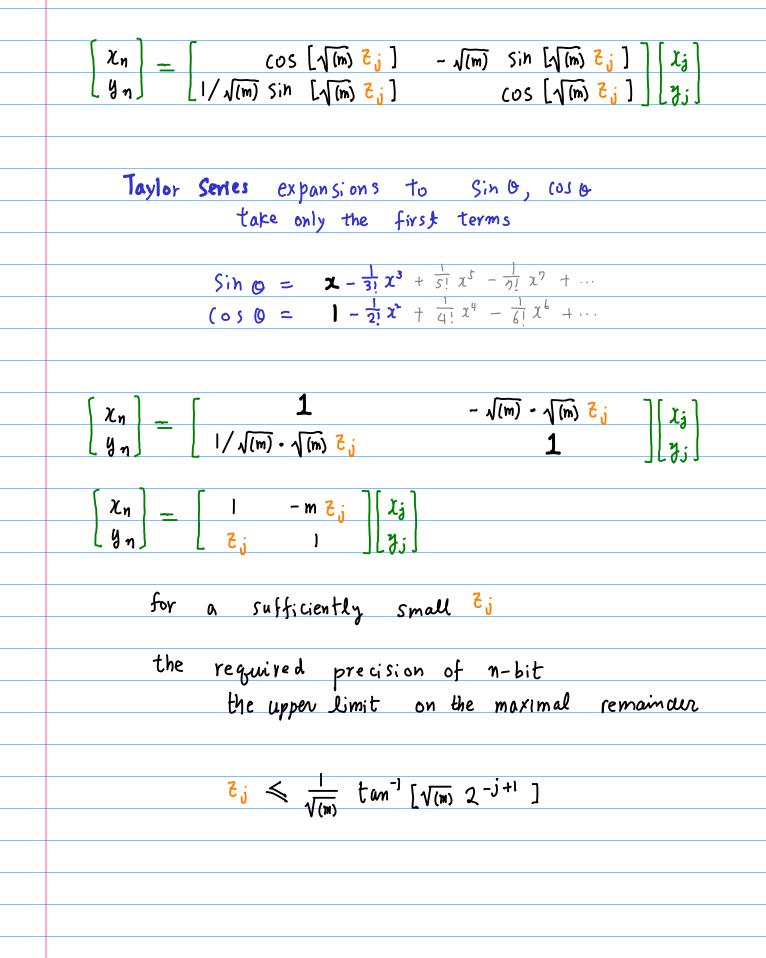
Modified CORPLC
Timmermann [989 Electronics Letters

$$2n = k_m \{ x_n (os [\sqrt{10} \times 1 - \sqrt{10} + sin [\sqrt{10} \times 1] \} \\
y_n = k_m \{ 1/\sqrt{10} x_s sin [\sqrt{10} \times 1 + s_s (os [\sqrt{10} \times 1] \} \\
z_n = z_0 + x$$

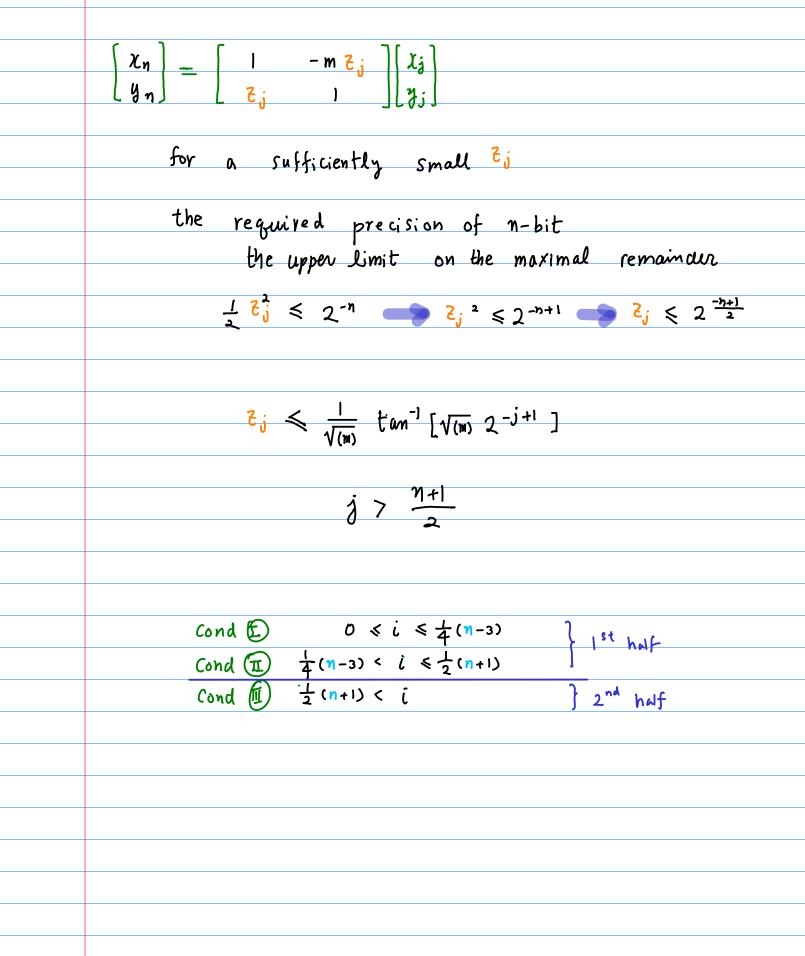
$$k_m : the scaling factor \\
m : the coordinate system (0, 1, +1)$$

$$(x : the rotation angle$$

$$\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}: the initial values depends on the iteratron goal$$
Data dependency across iteratron
$$\Rightarrow CSA$$
 no besefit



)	lst half iterrations : the most significant contribution
	the rotation angle $\alpha_i = \frac{1}{\sqrt{(m)}} \tan^{-1} \left[\sqrt{(m)} 2^{-S(m,i)}\right]$
	S(m,i) the iteration shift values
	α_i decreases with the increasing
	Iteration index i
_	
	and half therefrom a transmission of the
	2nd half iterations: can improve the accuracy
	only by one bit each
	$c_{i} \neq f$ $p \neq i \leq \pm (r_{i} > 2)$
	$Cond (f) \qquad 0 \le i \le \frac{1}{4}(n-3) \qquad \qquad$
	$\operatorname{cond}(\underline{\mu}) = 4 \left(\frac{1-3}{2} \right)^{-3} \left(\frac{3}{2} \right)^{-3} \left(\frac{3}{2}$
	Cond $(n+1) < i$ } 2^{nd} half


Modified CORDIC rotation $E_n \rightarrow 0$ $\chi_n = k_m \left\{ \qquad \chi_{\circ} \left(os \left[\sqrt{(m)} \, \alpha \right] - \sqrt{(m)} \, y_{\circ} \, sin \left[\sqrt{(m)} \, \alpha \right] \right\}$ $y_n = k_m \left\{ \frac{1}{\sqrt{m}} \mathcal{I}_{\delta} \sin\left[\sqrt{m} \propto \right] + y_{\delta} \cos\left[\sqrt{m} \propto \right] \right\}$ Vectoring yn→0 $\chi_n = k_m \sqrt{\chi_0^2 + m y_0^2}$ $2n = 2_0 + 1/\sqrt{(m)} \tan^{-1} \left[\sqrt{(m)} y_0 / x_1\right]$

2nd half iterations: can improve the accuracy only by one bit each replace these iterations by <u>a single rotation</u> after the remaining rotation angle has been reduced Using a fixed number of pure corple iterations this truncation reduces the latency time and saves area although the truncation requires extra handware the necessary minimum number of iterations

Rotation mode (Z->o) after j corpic rotations have been performed (lj, Jj) the 2 path contains the remaining rotation angle (Z; $\begin{array}{c} \chi_{n} \\ - \left[\begin{array}{c} \cos\left[\sqrt{(m)} \ \overline{c}_{j}\right] \\ \eta_{n} \end{array}\right] \\ - \sqrt{(m)} \ \sin\left[\sqrt{(m)} \ \overline{c}_{j}\right] \\ - \sqrt{(m)} \ \cos\left[\sqrt{(m)} \ \overline{c}_{j}\right] \\ - \sqrt{$ $\chi_n = k_m \left\{ \chi_0 \left(os \left[\sqrt{m} \right] \times \left[- \sqrt{m} \right] \right\} \right\}$ $y_n = k_m \left\{ \frac{1}{\sqrt{m}} \mathcal{I}_{\circ} \sin\left[\sqrt{m} \propto \right] + y_{\circ} \cos\left[\sqrt{m} \propto \right] \right\}$ $z_n = z_0 + \alpha$ assume km = 1 + 2nd half iteration does not affect scaling factors

Modified CORDIC

Rotation mode $\chi_n = \chi_j - m Z_j Y_j (j > (n+1)/2)$ $Y_n = Z_j \chi_j + Y_j (j > (n+1)/2)$ Vectoring mode $\chi_n = z_j$ $z_n = z_j + \frac{y_j}{x_j}$ $\frac{y_j}{x_j}$ $\frac{y_j}{x_$ the prediction algorithm : rotation mode (OK) vectoring mode (X) 2nd half of the n iterations in rotation mode ~ replaced by 2 multiplications in panallul { Zj * Xj | Zj * 9j A fully panallel n-bit Wallace tree multiplier : 2 logs (n) FA time unit prediction + termination.

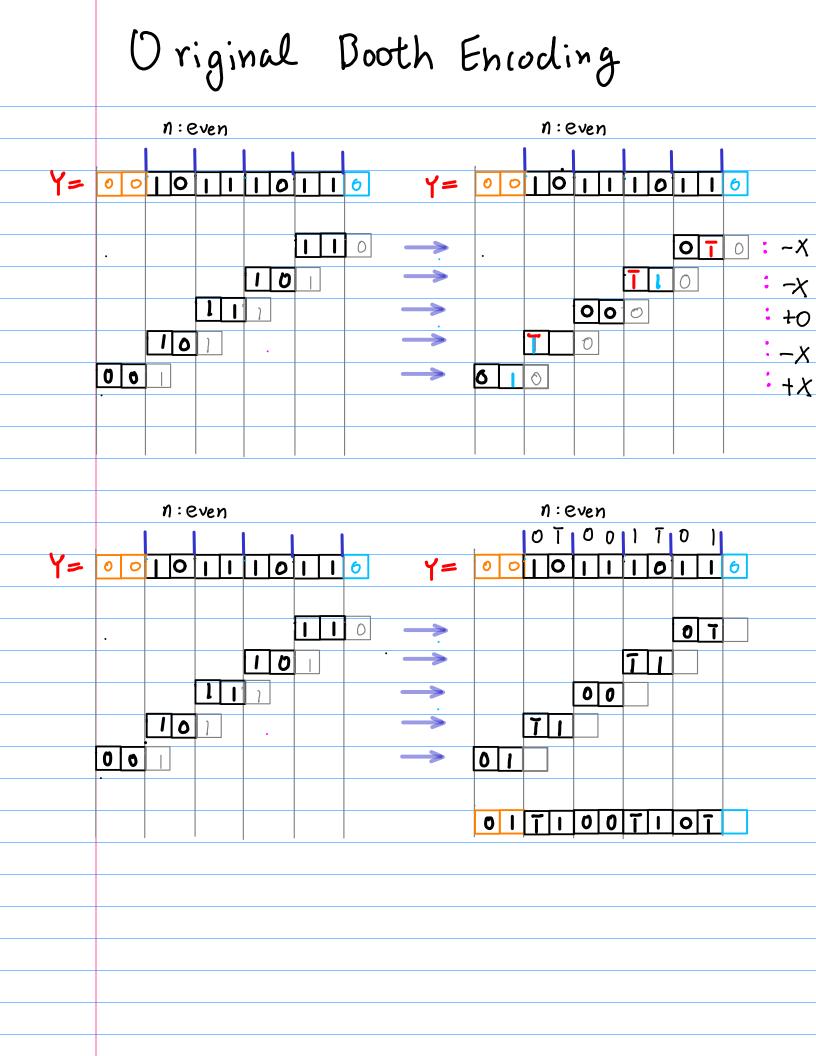
the Truncated. CORDIC Algorithm - reduces the number of CORPIC iterations - Multiplication (division handware Booth Technique halves the amount of partial products Carry Save Architecture km + 1 => multiplication => multiplier anyway

Modified Booth Encoding CSD
Low Latency CORDIC IEEE Trans. on Computers Aug 1992
Pack bit point with a
 each bit pair contains 98 1 6 5 4 3 2 1 0 at least one zero
 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 CSP property
In Timmermann's paper, the modified Booth encoding
 refers to CSD (Canonic Signed Digit) $\overline{\text{Ui}\text{Ui}\text{H}} = 0$
 not the generally known modified Booth encoding.
 the algorithm depends on i
 S(m,i)=i
$\lambda(t) = 1$ for $ t = 0$
$\int_{L} (t) = 0 \text{for} t = 1$
$()_{(t)} = 0$ for $ t = 1$
$\begin{aligned} \lambda(t) &= 0 \text{for} t = 1 \\ \lambda(t) &= 1 \text{for} \tau_i = 0 \begin{cases} \lambda(t_{i+1}) &= 1 \text{for} \tau_i = 0 \end{cases} \end{aligned}$
$\int_{\mathcal{L}} (t) = 0 \text{for} t = 1$
$\begin{aligned} \lambda(t) &= 0 \text{for} t = 1 \\ \lambda(t) &= 1 \text{for} \tau_i = 0 \begin{cases} \lambda(t) &= 1 \text{for} \tau_i = 0 \end{cases} \end{aligned}$
$ \begin{array}{c} \lambda(t) = 0 \text{for} t = 1 \\ \\ \lambda(\tau_{L}) = 1 \text{for} \sigma_{L} = 0 \\ \\ \lambda(\tau_{L}) = 0 \text{for} \sigma_{L} = 1 \end{array} \qquad \begin{array}{c} \lambda(\tau_{L+1}) = 1 \text{for} \sigma_{L} = 0 \\ \\ \lambda(\tau_{L}) = 0 \text{for} \sigma_{L} = 1 \end{array} \qquad \begin{array}{c} \lambda(\tau_{L+1}) = 0 \text{for} \sigma_{L} = 1 \\ \\ \lambda(\tau_{L}) = 0 \text{for} \sigma_{L} = 1 \end{array} $
$ \begin{array}{c} \lambda(t) = 0 \text{for} t = 1 \\ \\ \lambda(\overline{\sigma_{L}}) = 1 \text{for} \sigma_{L} = 0 \\ \lambda(\overline{\sigma_{L}}) = 0 \text{for} \sigma_{L} = 1 \\ \end{array} \begin{array}{c} \lambda(\overline{\sigma_{L+1}}) = 1 \text{for} \sigma_{L} = 0 \\ \lambda(\overline{\sigma_{L+1}}) = 0 \text{for} \sigma_{L} = 1 \\ \end{array} \end{array} $
$ \begin{array}{c} \lambda(\mathbf{r}_{\mathbf{i}}) = 0 \text{for} \mathbf{t} = 1 \\ \\ \lambda(\mathbf{r}_{\mathbf{i}}) = 1 \text{for} \mathbf{r}_{\mathbf{i}} = 0 \{\lambda(\mathbf{r}_{\mathbf{i}+1}) = 1 \text{for} \mathbf{r}_{\mathbf{i}} = 0 \\ \\ \lambda(\mathbf{r}_{\mathbf{i}}) = 0 \text{for} \mathbf{r}_{\mathbf{i}} = 1 \lambda(\mathbf{r}_{\mathbf{i}+1}) = 0 \text{for} \mathbf{r}_{\mathbf{i}} = 1 \\ \\ \hline \\ \hline$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Simple Approximation oi oi oi > 0

 $\begin{bmatrix} \chi_{i+2} \\ \chi_{i+2} \end{bmatrix} = \begin{bmatrix} 1 - m \underbrace{\sigma_i \ \sigma_{i+1}}_{i+1} 2^{-2i-1} \\ (\sigma_i 2^{-i} + \sigma_{i+1} 2^{-i-1}) \\ (\sigma_i 2^{-i} + \sigma_{i+1} 2^{-i-1}) \end{bmatrix} \begin{bmatrix} \chi_i \\ \chi_i \end{bmatrix}$ $\begin{array}{c} \mathcal{X}_{i+2} \\ \mathcal{Y}_{i+2} \end{array} = \begin{bmatrix} 1 & -m(\sigma_i 2^{-i} + \sigma_{i+1} 2^{-i-1}) \\ (\sigma_i 2^{-i} + \sigma_{i+1} 2^{-i-1}) & 1 \end{bmatrix}$ $\chi_{i+2} = (\chi_i - m \sigma_i \chi^{-i} y_i - m \sigma_{i+1} \chi^{-i-1} y_i)$ $y_{in} = (y_i + \sigma_i 2^{-i} x_i + \sigma_{in} 2^{-i-1} x_i)$ $\chi_{i+1} = (\chi_{i} - m \sigma_{i} \chi^{-i} y_{i} - m \sigma_{i+1} \chi^{-i-1} y_{i}) \cdot (1 + \lambda(\sigma_{i}) m \chi^{-2i-1} \chi_{i} + \lambda(\sigma_{i+1}) m \chi^{-2i-3} \chi_{i})$ $y_{i+2} = \left[y_i + \sigma_i 2^{-i} x_i + \sigma_{i+1} 2^{-i-1} x_i\right] \left(\left[+ \lambda (\sigma_i) m 2^{-2i-1} y_i + \lambda (\sigma_{i+1}) m 2^{-2i-3} y_i\right]\right]$ scaling factor compensation no rotation &m, i+1 -> SF compensation for Oi+1 0i=1, 0in=0 $O_1 = 0$, $O_{i+1} = |$ no rotation $X_{m,i} \rightarrow SF$ (ompensation for O_i no rotation (Qm, i+1) > SF compensation for (Oi+1) (Qm, i) $f_{i} = 0, f_{1} = 0$ In other words 0;=1, (in=0 rotation $X_{m,i} \rightarrow n^{o}$ SF compensation for f_{i} λ(**σ**į) = 0 rotation & m, i+1 > no SF (pompensation for Fin $\lambda(\sigma_{i+1}) = 0$ $\sigma_{i} = 0$, $\sigma_{i+1} = 1$ no rotation (dm, i+1) > SF compensation for (0i+1) (Ci) λ(<mark>σ</mark>į) = | $0_{i} = 0, 0_{i+1} = 0$ λ(σ_{i+}) =1

$$\begin{bmatrix} \chi_{in} \\ y_{in} \end{bmatrix} = \begin{bmatrix} 1 - m \left[\overline{0}_{i} \frac{1}{2} e^{-kt-1} & -m \left(\overline{0}_{i} \frac{1}{2} e^{-kt-1} \right) \right] \\ \left[\left(\overline{0}_{i} \frac{1}{2} e^{-kt} + \overline{0}_{i+1} \frac{1}{2} e^{-kt} \right) & 1 - m \left[\overline{0}_{i} \overline{0}_{in} \frac{1}{2} e^{-kt-1} \right] \\ \chi_{in} \end{bmatrix} \begin{bmatrix} \chi_{i} \\ y_{in} \end{bmatrix} \\ \begin{bmatrix} \chi_{in} \\ z_{inn} \end{bmatrix} = \begin{pmatrix} \chi_{i} & -m \\ \overline{0}_{i} \frac{1}{2} e^{-kt} \chi_{i} \end{bmatrix} + \begin{bmatrix} m \\ \overline{0}_{in} 2^{-kt-1} \\ \chi_{i} + \overline{0}_{i} 2^{-k} \chi_{i} \end{bmatrix} + \begin{bmatrix} \overline{0}_{i} e^{-kt} \frac{1}{2} e^{-kt-1} \\ \chi_{i} + \overline{0}_{in} 2^{-kt-1} \\ \chi_{i} \end{bmatrix} + \begin{bmatrix} \chi_{i} \\ y_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{i} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{in} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{in} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{in} \\ \chi_{inn} \end{bmatrix} + \begin{bmatrix} \chi_{inn} \\ \chi_$$


	$(1 + \lambda(\sigma_{i}) + 2^{-2i-1} x_{i} + \lambda(\sigma_{i+1}) + 2^{-2i-3} x_{i})$
$y_{i+2} = [y_i + \sigma_i 2^{-i} x_i + \sigma_{i+1} 2^{-i-1} x_i]$	$(1 + \lambda(\sigma_i) + 2^{-\lambda i - 3} y_i + \lambda(\sigma_{i+1}) + 2^{-\lambda i - 3} y_i)$
rotation by Km, i or Km, i+1	Timmermann's constant scaling factor
multiplex the diff. shifts	for n-bit precision.
⇒ 4-to-2 cells Lin, gi+2	
3-to-2 cells zinz	late evaluation
	after all Itenations
	Wallace Tree

Oi's one recoded in parallel # of non-zero ois at most half of max value w/o recoding $\sigma_i \sigma_{i+1} = 0$ $\sigma_i \delta_{in}$ case () () case₃ ⁰ ⁰ $(|+m2^{-2i+})\cdot(|+m2^{-2i-3}) = |+m2^{-2i-1} + m2^{-2i-3}$ $(|+m2^{-2i+})\cdot(|+m2^{-2i-3})\cdot(|+m2^{-2i-5}) = |+m2^{-2i+1} + m2^{-2i-3} + m2^{-2i-5}$ $\frac{(1+m2^{-2i-0}-1)\cdot(1+m2^{-2i-2}-1)\cdot(1+m2^{-2i-4}-1)\cdot(1+m2^{-2i-6}-1)\cdots}{(1+m2^{-2i-0}-1)} \cdots$ $= 1+m2^{-2i-0}+m2^{-2i-2}+m2^{-2i-4}+m2^{-2i-6}-1$ $\prod_{j=0}^{n} \left(\left[+ m \lambda^{-2i-2j-1} \right] \right) = \left[+ \sum_{j=0}^{n} m \lambda^{-2i-2j-1} \right]$ Constrained by N-bit accuracy

 ďm, i	; X m, i+1		
 (l+m2	$(1 + m 2^{-2i-3}) =$	+ m 2 ⁻²ⁱ⁻¹ + m 2 ⁻²ⁱ⁻	-3
	σ _i =1	°i = 0	€i = 0
	0 _{i+1} = 0	°~i+1 =	0~ _{i+1} = 0
no rotation by	Q _{m, in} (1+m2 ⁻²ⁱ⁻³)	$\alpha_{m,i}$ (1+m2 ⁻²ⁱ⁻¹)	$Q_{m,i} & Q_{m,in}$ $1 + m 2^{-2i-3} + m 2^{-2i-3}$
SF compensation	$(1+m2^{-2i-3})$	$(+m2^{-2(+)})$	$1+m2^{-2i+}+m2^{-2i-3}$

Generally known "Modified" Booth Encoding

		2' 20			
2-bit encoding		1.1	scale factor		
all zero's	000-	$\rightarrow 000$	$O^{-}\lambda + O = + O$	+0	
end of 1's	001		$0^{i}2+1=+1$	+ χ	
isolated 1	010-		$1^{-}2+T = +1$, <mark>+</mark> X	
end of l's	011		1=2+0 =+2	+2×	
start of 1's	100		$T^{,2+} \mathfrak{O} = -2$	-2 X	
isolated O	101-		$T^{2}2+ =-1$	~ X	
start of i's			0 [:] 2+7 = -1	- X	
all i's	1 1] —		0:2+0 = 0	† 0	
	Scale	factor {	0,土1,土2}		
not	the one	Timmermann	's paper ve	ters to	
				· · •	

After the 1 st Pass
$\bigcirc \bigcirc \bigcirc$
possible boundary cases
possible pownand cases

Pass 2 Operation need verification! iterative application 01 0 T $\textcircled{2} \longrightarrow$ 0 0 0 С С O С Т 10 0 10 Ю ī O Ø 0 0 0 0 ΤØ 1 1 0 1 G 0 Ø TO 0 Ø T Ø Ø Ø Ø 0 0 0 0 ĭ 0 ĭ ĭ 0 G 0 Ø 0 Ø Ø 1 T T Ø Ø 0 T Ø Q OT O Ø 0 T Т $\overline{\mathfrak{o}_{i}} \, \overline{\mathfrak{o}_{i+1}} = 0$

ł	the 2 nd pass	
	Y= 0010110110	
	0 Ţ 0 0 Ţ 0 Ţ 0 0 Ţ 0 0 Ţ 0 Ţ	
	T T 0 1 T 0 0 0	
	0 Ţ 0 0 0 T 0 Ţ 0 0 0 Ţ 0 0 0 T 0 Ţ	
	0 1 0 T 0 0 T 0 T	$\sigma_{i} \delta_{in} = 0$

CSD	approach	Efficient canonic signed digit recoding Gustavo A. Ruiz n , Mercedes Granda Microelectronics Journal 42 (2011)	
<u> </u>		Iterative Reduction of I-runs	
 0010		$\sigma_{i} \delta_{i+1} = 0$	
• • 0			
	000T0T0	Unique encoding	
		unique encouring	
0101	000T0T0		
1	1		
0116			_
10T0			
 •			
0111	6		
100T	6		
0			
I 0 0 0	<u>1</u> 0		
	<u>,</u>		
	0 0 T 6		_
	<u> </u>		
			_

Verification 2⁹ 2⁶ 2⁵ 2⁴ 2³ 2¹ 2¹ 2⁰ ○ 1 0 1 1 1 0 1 1 6 $2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} + 2^{\circ} = |28 + 32 + 16 + 8 + 2 + 1 = 187$ 0 $2^8 - 2^7 + 2^4 - 2^3 + 2^2 - 2^6 = 256 - 128 + 64 - 8 + 4 - 1 = 187$ 0 | T | 0 0 T | 0 T 0 1 0 T 0 0 0 T 0 T $2^8 - 2^6 - 2^2 - 2^{\circ} = 25^{\circ} - 64 - 4 - 1 = 187$ $2^{8} - 2^{6} - 2^{2} - 2^{\circ} = 25^{6} - 64 - 4 - 1 = 187$ T 0 0 0 0 0 6 0

00101110
00100100
 $\bigcirc 10707070$

Canonical Signed Digit (CSD) (1) the number of non-zero digits is minimal (2) no two consecutive digits are both non-zero two non-zero digits are not adjacent