
1 Young Won Lim
10/22/19

Monad P3 : IO Monad Methods (2B)

2 Young Won Lim
10/22/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

mailto:youngwlim@hotmail.com

IO Monad Methods (2B) 3 Young Won Lim
10/22/19

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

IO Monad Methods (2B) 4 Young Won Lim
10/22/19

getChar :: IO Char

putChar :: Char -> IO ()

main :: IO ()

main = do c <- getChar

 putChar c

ready :: IO Bool

ready = do c <- getChar

 c == 'y' -- Bad!!!

ready :: IO Bool

ready = do c <- getChar

 return (c == 'y')

https://www.haskell.org/tutorial/io.html

Examples of Returning IO a Value

c == 'y' : just a boolean value,

not an action.

need to take this boolean

and create an action

that does nothing

but return the boolean as its result.

c :: Char

IO Monad Methods (2B) 5 Young Won Lim
10/22/19

return :: a -> IO a

getLine :: IO String

getLine = do c <- getChar

 if c == '\n'

 then return ""

 else do l <- getLine

 return (c:l)

Each do introduces a single chain of statements.

Any intervening construct, such as the if,

must use a new do to initiate further sequences of actions.

https://www.haskell.org/tutorial/io.html

do produces a chain of statements

IO Monad Methods (2B) 6 Young Won Lim
10/22/19

 f :: Int -> Int -> Int

absolutely cannot do any I/O

since no IO a in the returned type.

it is not intended to place print statements liberally throughout

their code during debugging in Haskell. (not like C programming)

There are some unsafe functions available to get around this

problem but these are not recommended.

Debugging packages (like Trace) often make liberal use of

these ‘forbidden functions' in an entirely safe manner.

https://www.haskell.org/tutorial/io.html

Unsafe functions – extracting a from IO a

Note that there is no function like this:

unsafe :: IO a -> a

IO Monad Methods (2B) 7 Young Won Lim
10/22/19

No escape from the IO monad.

[exception: unsafePerformIO. Do not use!]

all the I/O that your program will ever perform

gets bundled up into a giant single IO block,

thus enforcing a global ordering on the operations.

[unless forkIO is called]

unsafePerformIO is so unsafe because it is impossible

to figure out exactly when, if, or how many times

the enclosed I/O operations will happen

https://www.haskell.org/tutorial/io.html

IO global ordering

Note that there is no function like this:

unsafe :: IO a -> a

IO Monad Methods (2B) 8 Young Won Lim
10/22/19

todoList :: [IO ()]

todoList = [putChar 'a',

 do putChar 'b'

 putChar 'c',

 do c <- getChar

 putChar c]

This list does not actually invoke any actions

---it simply holds them.

To join these actions into a single action,

a function such as sequence_ is needed:

https://www.haskell.org/tutorial/io.html

IO Actions: Ordinary Values

IO Monad Methods (2B) 9 Young Won Lim
10/22/19

sequence_ :: [IO ()] -> IO ()

sequence_ [] = return ()

sequence_ (a:as) = do a

 sequence_ as

sequence_ :: [IO ()] -> IO ()

sequence_ = foldr (>>) (return ())

https://www.haskell.org/tutorial/io.html

Join a list of actions

do x;y

x >> y

IO Monad Methods (2B) 10 Young Won Lim
10/22/19

getLine :: IO String

putStrLn :: String -> IO () -- note that the result value is an empty tuple.

randomRIO :: (Random a) => (a,a) -> IO a

Normally Haskell evaluation doesn't cause

this execution to occur.

A value of type (IO a) is almost completely inert.

the only IO action that can be run is main

https://wiki.haskell.org/Introduction_to_IO

Another Examples of Returning IO a (1)

IO Monad Methods (2B) 11 Young Won Lim
10/22/19

main :: IO ()

main = putStrLn "Hello, World!"

main = putStrLn "Hello" >> putStrLn "World"

main = putStrLn "Hello, what is your name?"

 >> getLine

 >>= \name -> putStrLn ("Hello, " ++ name ++ "!")

https://wiki.haskell.org/Introduction_to_IO

Another Examples of Returning IO a (2)

putStrLn :: String -> IO ()

getLine :: IO String

putStrLn :: String -> IO ()

IO Monad Methods (2B) 12 Young Won Lim
10/22/19

putStr :: String -> IO ()

putStr s = sequence_ (map putChar s)

In an imperative language,

mapping an imperative version of putChar over the string

would be sufficient to print it.

In Haskell, however,

the map function does not perform any action.

Instead it creates a list of actions,

one for each character in the string.

https://www.haskell.org/tutorial/io.html

putStr via putChar

do x;y

x >> y

map putChar “abc”

[putChar ‘a’, putChar ‘b’, putChar ‘c’]

IO Monad Methods (2B) 13 Young Won Lim
10/22/19

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

foldr (+) 5 [1,2,3,4]

(+) :: (a -> b -> b)

5 :: b

[1,2,3,4] :: [a]

https://www.haskell.org/tutorial/io.html

foldr

fold (+) [1,2,3,4,5]

1 + 2 + 3 + 4 + 5 = 15

foldr (+) 5 [1,2,3,4]

(1+(2+(3+(4+5)))) = 15

foldr (/) 2 [8,12,24,4]

(8/(12/(24/(4/2))))

(8/(12/(24/2)))

(8/(12/12))

(8/1)

8

IO Monad Methods (2B) 14 Young Won Lim
10/22/19

map putChar “abc”

[putChar ‘a’, putChar ‘b’, putChar ‘c’]

sequence_ (map putChar “abc”)

foldr (>>) (return ()) (map putChar “abc”)

foldr (>>) (return ()) [putChar ‘a’, putChar ‘b’, putChar ‘c’]

(putChar ‘a’ >> (putChar ‘b’ >> (putChar ‘c’ >> (return ()))))

(putChar ‘a’ >> putChar ‘b’ >> putChar ‘c’ >> return ())

https://www.haskell.org/tutorial/io.html

putStr via putChar example

map putChar “abc”

[putChar ‘a’, putChar ‘b’, putChar ‘c’]

IO Monad Methods (2B) 15 Young Won Lim
10/22/19

type FilePath = String -- path names in the file system

openFile :: FilePath -> IOMode -> IO Handle

hClose :: Handle -> IO ()

data IOMode = ReadMode | WriteMode

 | AppendMode | ReadWriteMode

Opening a file creates a handle (of type Handle)

for use in I/O transactions.

Closing the handle closes the associated file:

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles

IO Monad Methods (2B) 16 Young Won Lim
10/22/19

Handles can also be associated with channels:

communication ports not directly attached to files.

Predefined channel handles :stdin, stdout, and stderr

Character level I/O operations include hGetChar and hPutChar,

which take a handle as an argument.

 getChar = hGetChar stdin

Haskell also allows the entire contents of a file or channel

to be returned as a single string:

getContents :: Handle -> IO String

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles

IO Monad Methods (2B) 17 Young Won Lim
10/22/19

main = do fromHandle <- getAndOpenFile "Copy from: "

ReadMode

 toHandle <- getAndOpenFile "Copy to: " WriteMode

 contents <- hGetContents fromHandle

 hPutStr toHandle contents

 hClose toHandle

 putStr "Done."

getAndOpenFile :: String -> IOMode -> IO Handle

getAndOpenFile prompt mode =

 do putStr prompt

 name <- getLine

 catch (openFile name mode)

 (_ -> do putStrLn ("Cannot open "++ name ++ "\n")

 getAndOpenFile prompt mode)

https://www.haskell.org/tutorial/io.html

Files, Channels, Handles

IO Monad Methods (2B) 18 Young Won Lim
10/22/19

getLine = do c <- getChar

 if c == '\n'

 then return ""

 else do l <- getLine

 return (c:l)

function getLine() {

 c := getChar();

 if c == `\n` then return ""

 else {l := getLine();

 return c:l}}

https://www.haskell.org/tutorial/io.html

Functional vs Imperative Programming

IO Monad Methods (2B) 19 Young Won Lim
10/22/19

Errors are encoded using a special data type, IOError.

This type represents all possible exceptions

that may occur within the I/O monad.

This is an abstract type:

no constructors for IOError are available to the user.

isEOFError :: IOError -> Bool

https://www.haskell.org/tutorial/io.html

IOError Monad

IO Monad Methods (2B) 20 Young Won Lim
10/22/19

An exception handler has type IOError -> IO a.

The catch function associates an exception handler

with an action or set of actions

The arguments to catch are an action and a handler.

catch :: IO a -> (IOError -> IO a) -> IO a

If the action succeeds,

its result is returned without invoking the handler.

If the action fails (an error occurs),

the error is passed to the handler as a value of type IOError

and the handler’s action is then invoked

https://www.haskell.org/tutorial/io.html

Exception Handling

action handler

IO Monad Methods (2B) 21 Young Won Lim
10/22/19

catch :: IO a -> (IOError -> IO a) -> IO a

getChar' :: IO Char

getChar' = getChar `catch` (\e -> return '\n')

getChar' :: IO Char

getChar' = getChar `catch` eofHandler where

 eofHandler e = if isEofError e then return '\n' else ioError e

isEOFError :: IOError -> Bool

ioError :: IOError -> IO a

https://www.haskell.org/tutorial/io.html

Exception Handling

IO Monad Methods (2B) 22 Young Won Lim
10/22/19

getLine' :: IO String

getLine' = catch getLine'' (\err -> return ("Error: " ++ show err))

 where

 getLine'' = do c <- getChar'

 if c == '\n' then return ""

 else do l <- getLine'

 return (c:l)

https://www.haskell.org/tutorial/io.html

Exception Handling

IO Monad Methods (2B) 23 Young Won Lim
10/22/19

randomR :: RandomGen g => (a, a) -> g -> (a, g)

random :: RandomGen g => g -> (a, g)

takes a range (lo,hi) :: (a, a) and

a random number generator g,

returns a random value uniformly distributed

in the closed interval [lo,hi],

together with a new generator g

randomRIO :: (a, a) -> IO a

randomIO :: IO a

A variant of randomR / random

that uses the global random number generator

See System.Random

https://hackage.haskell.org/package/random-1.1/docs/System-Random.html

RandomRIO, RandomIO

IO Monad Methods (2B) 24 Young Won Lim
10/22/19

import System.Random

main = do

 putStr . show =<< randomRIO (0, 100 :: Int)

 putStr ", "

 print =<< randomRIO (0, 100 :: Int)

 print =<< (randomIO :: IO Float)

$ runhaskell random-numbers.hs

51, 15

0.2895795

https://hackage.haskell.org/package/random-1.1/docs/System-Random.html

RandomRIO Example

randomRIO :: (a, a) -> IO a
randomIO :: IO a:: IO Int

:: IO Int

:: IO Float

IO Monad Methods (2B) 25 Young Won Lim
10/22/19

IO Monad Methods (2B) 26 Young Won Lim
10/22/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

instance Monad IO where

 m >> k = m >>= \ _ -> k

 return = returnIO

 (>>=) = bindIO

 fail s = failIO s

returnIO :: a -> IO a

returnIO x = IO $ \s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \s -> case m s of (# new_s, a #) -> unIO (k a) new_s

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad

IO Monad Methods (2B) 27 Young Won Lim
10/22/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

instance Monad IO where
 {-# INLINE return #-}
 {-# INLINE (>>) #-}
 {-# INLINE (>>=) #-}
 m >> k = m >>= \ _ -> k
 return = returnIO
 (>>=) = bindIO
 fail s = failIO s

returnIO :: a -> IO a
returnIO x = IO $ \ s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.Base.html#Monad

IO Monad

IO Monad Methods (2B) 28 Young Won Lim
10/22/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

(>>=) = bindIO

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \s ->

 case m s of

(# s’, a #) -> unIO (k a) s’

(IO m) >>= k

IO m :: IO a m :: State# RealWorld -> (# State# RealWorld, a #)

k :: a -> IO b k a :: IO b

 s :: State# RealWorld

 s’ :: State# RealWorld

m s :: (# State# RealWorld, a #)

 (# s’, a #) :: (# State# RealWorld, a #)

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad

IO Monad Methods (2B) 29 Young Won Lim
10/22/19

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

(>>=) = bindIO

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \s ->

 case m s of

(# s’, a #) -> unIO (k a) s’

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a

k :: a -> IO b k a :: IO b

 unIO (k a) :: State# RealWorld -> (# State# RealWorld, a #)

 s’ :: State# RealWorld

 unIO (k a) s’ :: (# State# RealWorld, a #)

 \s -> unIO (k a) s’ :: State# RealWorld -> (# State# RealWorld, a #)

 IO $ \s -> unIO (k a) s’ :: IO b

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

IO Monad

(IO m) >>= k

IO m :: IO a

k :: a -> IO b k a :: IO b

IO Monad Methods (2B) 30 Young Won Lim
10/22/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

