
Link 9. Position Independent Code

Young W. Lim

2018-12-04 Tue

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 1 / 27

Outline

1 Linking - 9. Position Independent Code
Based on
Position Independent Code
PIC Data References
PIC Function Calls

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 2 / 27

Based on

"Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding
"Computer Architecture: A Programmer’s Perspective",
Bryant & O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 3 / 27

Position Independent Code

1 Sharing the same library code in memory

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 4 / 27

Sharing the same library code in memory

library code can be loaded and executed
at any address without modification by the linker
no a priori dedicated portion of the address space
-fPIC in gcc

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 5 / 27

Sharing codes on IA32 system

calls to procedures in the same object

no relocation
PC-relaive with know offsets
already PIC

calls to externally defined procedures
references to global variables

need relocation at link time
normally not PIC

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 6 / 27

PIC Data References

1 Accessing global variables
2 Global Offset Table (GOT)
3 Indirect reference through the GOT
4 Global variable access using the GOT

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 7 / 27

Accessing global variables (1)

Compilers generates PIC references to global variables
utilizing the follwing fact
No matter where an object module is loaded in memory
including the shared object modules,
the data segment is always allocated immediately
after the code segment

+--------------------+------------------+-----------------------+
| Read/Write segment | higher addresses | .data, .bss |
+--------------------+------------------+-----------------------+
| Read-only segment | lower addresses | .init, .text, .rodata |
+--------------------+------------------+-----------------------+
starting from 0x08048000

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 8 / 27

Accessing global variables (2)

the distance between
any instruction in the code segment and
any variable inthe data segment

is a run-time constant

independent of the absolute memory locations
of code and data segments

Global Offset Table (GOT)
at the beginning of data segment

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 9 / 27

Global Offset Table (GOT)

GOT contains an entry
for each global data object
that is referenced by the object module

the compiler generates also a relocation record

for each entry in the GOT

at load time, the dynamic linker relocates
each entry in the GOT
so that it contains the appropriate absolute address
each object module that references global data has its own GOT

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 10 / 27

Indirect reference through the GOT

at run time, each global variable is
referenced indirectly through the GOT
PIC code incurs performance degradation

each global variable reference require 5 instructions
additional memory reference to the GOT
machines with large register files can overcome this disadvantages
on register demanding IA32 systems, losing even one register
can cause to spill the registers to the stack

a pattern of codes

call LL
LL: popl %ebx; # ebx contains the current PC

addl $VAROFF, %ebx # ebx points to the GOT entry for var
movl (%ebx), %eax # references indirect through the GOT
movl (%eax), %eax

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 11 / 27

Global variable access using the GOT (1)

the call to LL pushes the return address
the address of popl instruction on the stack
then popl instruction pops this address into %ebx

the result of these 2 instructions
to move the value of the PC into register %ebx

call LL
LL: popl %ebx; # ebx contains the current PC

addl $VAROFF, %ebx # ebx points to the GOT entry for var
movl (%ebx), %eax # references indirect through the GOT
movl (%eax), %eax

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 12 / 27

Global variable access using the GOT (2)

addl adds a constant offest to %ebx
so that it points to the appropriate entry in the GOT
where the absolute address can be fetched
now, the global variable can be accessed indirectly
through the GOT entry contained in %ebx

the 2 movl load the contents of the global variable
indirectly through the GOD into register %eax

call LL
LL: popl %ebx; # ebx contains the current PC

addl $VAROFF, %ebx # ebx points to the GOT entry for var
movl (%ebx), %eax # references indirect through the GOT
movl (%eax), %eax

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 13 / 27

PIC Function Calls

1 Resolving external procedure calls
2 Lazy Binding
3 Vector addition and multiplication examples
4 The Global Offset Table for the previous examples
5 The Global Offset Table Example
6 Procedure Linkage Table
7 Procedure Linkage Table for the previous examples
8 GOT and PLT for addvec
9 Procedure Linkage Table Example

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 14 / 27

Resolving external procedure calls

the same approach to the PIC references to global variables

this approach require 3 additional instructions

ELF compilation systems use lazy binding technique
defers the binding of procedure addresses
until the first time the procedure is actually called
significant run-time overhead the first time call
for subsequent calls

one additional instruction
a memory reference for the indirection

call LL
LL: popl %ebx; # ebx contains the current PC

addl $PROCOFF, %ebx # ebx points to the GOT entry for proc
call *(%ebx) # call indirect through the GOT

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 15 / 27

Lazy Binding

implemented with a comapact but
somewhat complex interaction
between 2 data structures

GOT (Global Offset Table)
PLT (Procedure Linkage Table)

if an object module calls any functions
that are defined in shared libraries
then it has its own GOT and PLT
GOT in .data section
PLT in .text section

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 16 / 27

Vector addition and multiplication examples (1)

void addvec (int *x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)
z[i] = x[i] + y[i];

}

void multvect (int *x, int *y, int *z, int n)
{

int i;

for (i=0; i<n; i++)
z[i] = x[i] * y[i];

}

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 17 / 27

Vector addition and multiplication examples (2)

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main ()
{

addvec(x, y, z, 2);
printf("z= (%d %d)\n", z[0], z[1]);
return 0;

}

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 18 / 27

The Global Offset Table for the previous examples

Address Entry Contents Description
08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker
08049680 GOT[3] 0804845c address of p̃ushl̃in PLT[1] (printf)
08049684 GOT[4] 0804846a address of p̃ushl̃in PLT[2] (addvec)

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 19 / 27

The Global Offset Table Example (1)

| 08049674 | GOT[0] | 0804969c | address of .dynamic section |
contains the address of the .dynamic seqment
dynamic linker use this address to bind procedure addresses
such as the location of the symbol table and relocation information

| 08049678 | GOT[1] | 4000a9f8 | identifying info for the linker |
contains information that defines the module

| 0804967c | GOT[2] | 4000596f | entry point in dynamic linker |
contains an entry point into the lazy binding code of the dynamic linker

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 20 / 27

The Global Offset Table Example (2)

each procedure
that is defined in a shared object
and called by main2.o gets an entry in the GOT

starting from GOT[3]
GOT entries for printf defined in libc.so

-Got entries for addvec defined in libvector.so

| 08049680 | GOT[3] | 0804845c | address of pushl in PLT[1]
(printf) |

| 08049684 | GOT[4] | 0804846a | address of pushl in PLT[2]
(addvec) |

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 21 / 27

Procedure Linkage Table

PLT[0] : a special entry that jumps into dynamic linker
each called procedure has an entry in the PLT
starting at PLT[1]
PLT[1] : printf
PLT[2] : addvec
initially, after the program has been dynamically linked begins
executing
procedure printf and addvec are bound to the first instruction
in their respective PLT entries

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 22 / 27

Procedure Linkage Table for the previous examples

PLT[0]
08048444: pushl 0x8049678 # push &GOT[1]
804844a: jmp *0x804967c # jmp to *GOT[2] (linker)
8048450: # padding
8048452: # padding

PLT[1] <printf>
8048454: jmp *0x8049680 # jmp to *GOT[3]
804845a: pushl $0x0 # ID for printf
804845f: jmp 0x8048444 # jmp to PLT[0]

PLT[2] <addvec>
8048464: jmp *0x8049684 # jmp to *GOT[4]
804846a: pushl $0x8 # ID for addvec
804846f: jmp 0x8048444 # jmp to PLT[0]

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 23 / 27

GOT and PLT for addvec (1)

+----------+---------+----------+--+
| Address | Entry | Contents | Description |
+----------+---------+----------+--+
08049674	GOT[0]	0804969c	address of .dynamic section
08049678	GOT[1]	4000a9f8	identifying info for the linker
0804967c	GOT[2]	4000596f	entry point in dynamic linker
08049680	GOT[3]	0804845c	address of pushl in PLT[1] (printf)
08049684	GOT[4]	0804846a	address of pushl in PLT[2] (addvec)
+----------+---------+----------+--+

PLT[0]
08048444: pushl 0x8049678 # push &GOT[1]
804844a: jmp *0x804967c # jmp to *GOT[2] (linker)
8048450: # padding
8048452: # padding

...

PLT[2] <addvec>
8048464: jmp *0x8049684 # jmp to *GOT[4]
804846a: pushl $0x8 # ID for addvec
804846f: jmp 0x8048444 # jmp to PLT[0]

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 24 / 27

GOT and PLT for addvec (2)

| 08049674 | GOT[0] | 0804969c | address of .dynamic section |
| 08049684 | GOT[4] | 0804846a | address of pushl in PLT[2]
(addvec) |
8048464: jmp *0x8049684 # jmp to *GOT[4]
804846a: pushl $0x8 # ID for addvec
804846f: jmp 0x8048444 # jmp to PLT[0]

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 25 / 27

Procedure Linkage Table Example (1)

the call to addvec has the following form
80485bb: e8 a4 fe ff ff call 8048464 <addvec>

at the first call, control is passed to the 1st instruction
in PLT[2] which does the indirect jump through GOT[4]
initially, each GOT entry contains the address of the push1 entry
in the corresponding PLT engtry
the indirect jump in the PLT simply transfers control back
to the next instruction in PLT[2]

this instruction pushes an ID for the addvec symbol onto the stack

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 26 / 27

Procedure Linkage Table Example (2)

the last instruction jumps to PLT[0],
which pushes another word of identifying information
on the stack from GOT[1],
then, jumps into the dynamic linker indirectly through GOT[2].
the dynamic linker uses the two stack entries
to determinethe location of addvec,
overwrites GOT[4] with this address
and passes control to addvec

the only additional overhead from this point on
is the memory reference for the indirect jump

Young W. Lim Link 9. Position Independent Code 2018-12-04 Tue 27 / 27

	Linking - 9. Position Independent Code
	Based on
	Position Independent Code
	PIC Data References
	PIC Function Calls

