

#### **Readings**

#### Howitt & Cramer (2014)

- Ch 7: Relationships between two or more variables: Diagrams and tables
- Ch 8: Correlation coefficients: Pearson correlation and Spearman's rho
- Ch 11: Statistical significance for the correlation coefficient: A practical introduction to statistical inference
- Ch 15: Chi-square: Differences between samples of frequency data
- Note: Howitt and Cramer doesn't cover point bi-serial correlation

**Overview** 



1 Covariation
2 Purpose of correlation
3 Linear correlation
4 Types of correlation
5 Interpreting correlation
6 Assumptions / limitations

Covariation

\_\_\_\_\_

e.g., pollen and bees
e.g., study and grades
e.g., nutrients and growth

The world is made of co-variations



**Purpose of correlation** 

Covariations are the basis of more complex models

#### **Purpose of correlation**

The underlying purpose of correlation is to help address the question:

What is the

- relationship or
- · association or
- shared variance or
- co-relation

between two variables?

#### **Purpose of correlation**

Other ways of expressing the underlying correlational question include:

To what extent do variables

- covary?
- depend on one another?
- explain one another?

10

#### Linear correlation

Extent to which two variables have a simple linear (straight-line) relationship. r = -.76

11 l

#### **Linear correlation**

The linear relation between two variables is indicated by a correlation's:

- **Direction:** Sign (+ / -) indicates direction of relationship (+ve or -ve slope)
- **Strength:** Size indicates strength (values closer to -1 or +1 indicate greater strength)
- **Statistical significance:** *p* indicates likelihood that the observed relationship could have occurred by chance

Types of correlation

- No relationship (r ~ 0)
   (X and Y are independent)
- Linear relationship
   (X and Y are dependent)
   As X ↑s, so does Y (r > 0)
  - $-As X \uparrow s, Y \downarrow s (r < 0)$
- Non-linear relationship

1/

#### Types of correlation

There are many different measures of correlation.

To decide which type of correlation to use, consider the **levels of measurement** for each variable.

15

Types of correlation

- Nominal by nominal: Phi  $(\Phi)$  / Cramer's V, Chi-square
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial  $r_{pb}$
- Interval/ratio by interval/ratio:
   Product-moment or Pearson's r

16

| Types of correlation and LOM |                                                                    |                                                                                   |                                                                           |  |  |
|------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
|                              | Nominal                                                            | Ordinal                                                                           | Int/Ratio                                                                 |  |  |
| Nominal                      | Clustered bar-<br>chart<br>Chi-square,<br>Phi (φ) or<br>Cramer's V | ← Recode                                                                          | Clustered bar chart or scatterplot Point bi-serial correlation $(r_{pb})$ |  |  |
| Ordinal                      |                                                                    | Clustered bar<br>chart or<br>scatterplot<br>Spearman's<br>Rho or<br>Kendall's Tau | <b>←</b> ↑ Recode                                                         |  |  |
| Interval/Ratio               |                                                                    |                                                                                   | Scatterplot<br>Product-<br>moment                                         |  |  |

## Nominal by nominal

## Nominal by nominal correlational approaches

- · Contingency (or cross-tab) tables
  - Observed frequencies
  - Expected frequencies
  - Row and/or column %s
  - Marginal totals
- · Clustered bar chart
- Chi-square
- Phi (φ) / Cramer's V

19

# Contingency tables Bivariate frequency tables Marginal totals (blue) Observed cell frequencies (red) Exposed Not Expo

# Contingency table: Example Snoring Do you snore? 'Smokingr Smoking status Crosstabulation Count Smokingr Smoking status O Nonsmoker 1 Smoker Total Snoring Do you snore? 0 yes 1 no 1 smoker 1 s

#### 

occur if the variables are not correlated.

Chi-square is based on the squared differences between the actual and expected cell counts.

#### Cell percentages Row and/or column cell percentages can also be useful e.g., ~60% of smokers snore, whereas only ~30%d of non-smokers Snoring Do you snore? \* Smokingr Smoking status Crosstabulation % within Smokingr Smoking status. Smokingr \$moking status smoker 1 Smoker Total Snoring Do you snore? 59 3% 35.1% 0 yes 31.1% 68.9% 64.9% Total 100.0% 100.0% 100.0%





#### Pearson chi-square test

The value of the test-statistic is

$$X^2 = \sum rac{(O-E)^2}{E},$$

where

 $X^2$  = the test statistic that approaches a  $\chi^2$  distribution.

O = frequencies observed;

E = frequencies expected (asserted by the null hypothesis).





#### Phi (φ) & Cramer's V

(non-parametric measures of correlation)

#### Phi (φ)

 Use for 2 x 2, 2 x 3, 3 x 2 analyses e.g., Gender (2) & Pass/Fail (2)

#### Cramer's V

 Use for 3 x 3 or greater analyses e.g., Favourite Season (4) x Favourite Sense (5)

#### Phi (φ) & Cramer's V: Example

#### Symmetric Measures

|                    |            | Value | Approximate<br>Significance |
|--------------------|------------|-------|-----------------------------|
| Nominal by Nominal | Phi        | 207   | .004                        |
|                    | Cramer's V | .207  | .004                        |
| N of Valid Cases   |            | 188   |                             |

 $\chi^2$  (1, 188) = 8.07, p = .004,  $\phi$  = .21

Note that the sign is ignored here (because nominal coding is arbitrary, so the researcher should explain the direction of the relationship)

### Ordinal by ordinal

## Ordinal by ordinal correlational approaches

- Spearman's rho  $(r_s)$
- Kendall tau (τ)
- Alternatively, use nominal by nominal techniques
   (i.e., recode the variables or treat the

(i.e., recode the variables or treat them as having a lower level of measurement)

32

#### Graphing ordinal by ordinal data

- Ordinal by ordinal data is difficult to visualise because it is nonparametric, with many points.
- · Consider using:
  - Non-parametric approaches (e.g., clustered bar chart)
  - -Parametric approaches(e.g., scatterplot with line of best fit)

33

## Spearman's rho $(r_s)$ or Spearman's rank order correlation

- For ranked (ordinal) data
   -e.g., Olympic Placing correlated with
   World Ranking
- Uses product-moment correlation formula
- Interpretation is adjusted to consider the underlying ranked scales

34

#### Kendall's Tau (τ)

- Tau a
  - -Does not take joint ranks into account
- Tau b
  - -Takes joint ranks into account
  - -For square tables
- Tau c
  - -Takes joint ranks into account
  - -For rectangular tables

#### Ordinal correlation example

Godranked Religiousity

|       |                          | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|--------------------------|-----------|---------|---------------|-----------------------|
| Valid | 0 Do not believe in God  | 56        | 29.5    | 29.5          | 29.5                  |
|       | 1 Sort of believe in god | 57        | 30.0    | 30.0          | 59.5                  |
|       | 2 Believe in god         | 77        | 40.5    | 40.5          | 100.0                 |
|       | Total                    | 190       | 100.0   | 100.0         |                       |

Smokingranked Smoking ranked

|         |                | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|----------------|-----------|---------|---------------|-----------------------|
| Valid   | 0 Non-smoker   | 162       | 85.3    | 85.7          | 85.7                  |
|         | 1 Light smoker | 7         | 3.7     | 3.7           | 89.4                  |
|         | 2 Heavy smoker | 20        | 10.5    | 10.6          | 100.0                 |
|         | Total          | 189       | 99.5    | 100.0         |                       |
| Missing | System         | 1         | .5      |               |                       |
| Total   |                | 190       | 100.0   |               |                       |

35 l





# Dichotomous by interval/ratio

39

Point-biserial correlation  $(r_{pb})$ 

- One dichotomous & one interval/ratio variable

   e.g., belief in god (yes/no) and number of countries visited
- Calculate as for Pearson's product-moment r
- Adjust interpretation to consider the direction of the dichotomous scales



# Interval/ratio by interval/ratio

#### Scatterplot

- Plot each pair of observations (X, Y)
  - -x = predictor variable (independent; IV)
  - -y = criterion variable (dependent; DV)
- · By convention:
  - -IV on the x (horizontal) axis
  - -DV on the y (vertical) axis
- Direction of relationship:
- -+ve = trend from bottom left to top right
- --ve = trend from top left to bottom right

44

Scatterplot showing relationship between age & cholesterol with line of best fit

Upward slope = positive correlation

Age

#### Line of best fit

- The correlation between 2 variables is a measure of the degree to which pairs of numbers (points) cluster together around a best-fitting straight line
- Line of best fit: y = a + bx
- · Check for:
  - outliers
  - linearity









## Pearson product-moment correlation (r)

 The product-moment correlation is the standardised covariance.

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{S_X S_Y}$$

#### Covariance

Variance shared by 2 variables

$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1} \leftarrow \frac{\text{Cross products}}{N - 1 \text{ for the same}}$$

- Covariance reflects the direction of the relationship:
  - +ve cov indicates +ve relationship -ve cov indicates -ve relationship
- Covariance is unstandardised.

52



#### **Covariance** → **Correlation**

- Size depends on the measurement scale → Can't compare covariance across different scales of measurement (e.g., age by weight in kilos versus age by weight in grams).
- Therefore, standardise covariance (divide by the cross-product of the SDs) → correlation
- Correlation is an effect size i.e., standardised measure of strength of linear relationship

## Example quiz question: Covariance, *SD*, and correlation

The covariance between *X* and *Y* is 1.2. The *SD* of *X* is 2 and the *SD* of *Y* is 3. The correlation is:

a. 0.2 b. 0.3

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{S_X S_Y}$$

c. 0.4

d. 1.2

Answer: 1.2 / 2 x 3 = 0.2

55

#### Hypothesis testing

Almost all correlations are not 0. So, hypothesis testing seeks to answer:

- What is the likelihood that an observed relationship between two variables is "true" or "real"?
- What is the likelihood that an observed relationship is simply due to chance (sampling error)?

56

#### Significance of correlation

- Null hypothesis (H<sub>0</sub>): <sup>rho</sup> = 0 i.e., no "true" relationship in the population
- Alternative hypothesis (H<sub>1</sub>): ρ •• 0

   i.e., there is a real relationship in the population
- Initially, assume H<sub>0</sub> is true, and then evaluate whether the data support H<sub>1</sub>.
- ρ (rho) = population product-moment correlation coefficient

57

#### How to test the null hypothesis

- Select a critical value (alpha (α)); commonly .05
- Use a 1- or 2-tailed test; 1-tailed if hypothesis is directional
- Calculate correlation and its p value.
   Compare to the critical alpha value.
- If *p* < critical alpha, correlation is statistically significant, i.e., there is less than critical alpha chance that the observed relationship is due to random sampling variability.

E0

#### **Correlation - SPSS output**



#### **Errors in hypothesis thesting**

Type I error:

decision to reject **H**<sub>0</sub> when H<sub>0</sub> is true

Type II error:

decision to not reject  $\mathbf{H_0}$  when  $\mathbf{H_0}$  is false

- A significance test outcome depends on the statistical power which is a function of:
  - -Effect size (r)
  - -Sample size (N)
  - -Critical alpha level  $(\alpha_{crit})$

#### Significance of correlation critical (N - 2)p = .05The higher the .67 N, the smaller 10 .50 the correlation 15 required for a .41 20 statistically .36 significant result 25 .32 - why? 30





#### Practice quiz question: Significance of correlation

If the correlation between Age and Performance is statistically significant, it means that:

- a. there is an important relationship between the variables
- b. the true correlation between the variables in the population is equal to 0
- c. the true correlation between the variables in the population is not equal to 0
- d. getting older causes you to do poorly on tests

Interpreting correlation

Coefficient of Determination  $(r^2)$ 

- CoD = The proportion of variance in one variable that can be accounted for by another variable.
- e.g., r = .60,  $r^2 = .36$  or 36% of shared variance



## Interpreting correlation (Cohen, 1988)

- · A correlation is an effect size
- Rule of thumb:

Size of correlation

(Cohen, 1988)

WEAK (.1 - .3)

MODERATE (.3 - .5)

STRONG (> .5)

## Interpreting correlation (Evans, 1996)

Strength very weak .00 - .19 (0 to 4%) weak .20 - .39 (4 to 16%) moderate .40 - .59 (16 to 36%) .60 - .79 strong (36% to 64%) very strong .80 - 1.00 (64% to 100%) Correlation of this scatterplot = -.9

Scale has no effect on correlation.

### Correlation of this scatterplot = -.9









#### Write-up: Example

"Number of children and marital satisfaction were inversely related (r(48) = -.35, p < .05), such that contentment in marriage tended to be lower for couples with more children. Number of children explained approximately 10% of the variance in marital satisfaction, a small-moderate effect."

Assumptions and limitations

(Pearson product-moment linear correlation)

76

#### **Assumptions and limitations**

- 1 Levels of measurement
- 2 Normality
- 3 Linearity
  - 1 Effects of outliers
  - 2 Non-linearity
- 4 Homoscedasticity
- 5 No range restriction
- 6 Homogenous samples
- 7 Correlation is not causation
- 8 Dealing with multiple correlations

77

75

#### Normality

- X and Y data should be sampled from populations with normal distributions
- Do not overly rely on any single indicator of normality; use histograms, skewness and kurtosis (e.g., within -1 and +1)
- Inferential tests of normality (e.g., Shapiro-Wilks) are overly sensitive when sample is large

#### **Effects of outliers**

- · Outliers can disproportionately increase or decrease r.
- Options
  - -compute r with & without outliers
  - -get more data for outlying values
  - -recode outliers as having more conservative scores
  - -transformation
  - -recode variable into lower level of measurement and a non-parametric approach



Age and self-esteem (outliers removed) r = .23



**Non-linear relationships** Yes – straight-Check line appropriate scatterplot Can a linear relationship "capture" the No - straight-line inappropriate lion's share of the variance? If so, use r.

#### Non-linear relationships

If non-linear, consider:

- Does a linear relation help?
- Use a non-linear mathematical function to describe the relationship between the variables
- Transforming variables to "create" linear relationship

**Scedasticity** 

- Homoscedasticity refers to even spread of observations about a line of best fit
- **Hetero**scedasticity refers to uneven spread of observations about a line of best fit
- Assess visually and with Levene's test





#### **Range restriction**

- Range restriction is when the sample contains a restricted (or truncated) range of scores

   e.g., level of hormone X and age < 18 might have linear relationship
- If range is restricted, be cautious about generalising beyond the range for which data is available

   e.g., level of hormone X may not continue to increase linearly with age after age 18



















#### **Summary: Correlation**

- 1 The world is made of covariations.
- 2 Covariations are the building blocks of more complex multivariate relationships.
- 3 Correlation is a standardised measure of the covariance (extent to which two phenomenon co-relate).
- 4 Correlation does not prove causation may be opposite causality, bi-directional, or due to other variables. 97

#### Summary: Purpose of correlation

The underlying purpose of correlation is to help address the question:

What is the

- relationship or
- · association or
- shared variance or
- co-relation

between two variables?

98

#### **Summary: Types of correlation**

- Nominal by nominal:
   Phi (Φ) / Cramer's V, Chi-square
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio:
   Point bi-serial r...
- Point bi-serial *r*<sub>pb</sub>
   Interval/ratio by interval/ratio:
  Product-moment or Pearson's *r*

99

#### **Summary: Correlation steps**

- 1 Choose correlation and graph type based on levels of measurement.
- 2 Check graphs (e.g., scatterplot):
  - -Linear or non-linear?
  - -Outliers?
  - -Homoscedasticity?
  - -Range restriction?
  - -Sub-samples to consider?

100

#### **Summary: Correlation steps**

#### 3 Consider

- -Effect size (e.g.,  $\Phi$ , Cramer's V, r,  $r^2$ )
- -Direction
- -Inferential test (p)

#### 4 Interpret/Discuss

- -Relate back to hypothesis
- -Size, direction, significance
- -Limitations e.g.,
  - Heterogeneity (sub-samples)
  - Range restriction
  - Causality?

101

## Summary: Interpreting correlation

- · Coefficient of determination
  - -Correlation squared
  - -Indicates % of shared variance

 Strength
 r

 r²

 Weak:
 .1 - .3
 1 - 10%

 Moderate:
 .3 - .5
 10 - 25%

 Strong:
 > .5
 >

 25%

## Summary: Assumptions & limitations

1 Levels of measurement

2 Normality

3 Linearity

1 Effects of outliers

2 Non-linearity

4 Homoscedasticity

5 No range restriction

6 Homogenous samples

7 Correlation is not causation

103

#### References

Evans, J. D. (1996). *Straightforward statistics for the behavioral sciences*. Pacific Grove, CA: Brooks/Cole Publishing.

Howell, D. C. (2007). Fundamental statistics for the behavioral sciences. Belmont, CA: Wadsworth. Howell, D. C. (2010). Statistical methods for psychology (7th ed.). Belmont, CA: Wadsworth. Howitt, D. & Cramer, D. (2011). Introduction to statistics in psychology (5th ed.). Harlow, UK: Pearson.

104

#### **Next lecture**

#### **Exploratory factor analysis**

- Introduction to factor analysis
- Exploratory factor analysis examples
- EFA steps / process