
Conditions

Young W. Lim

2023-05-06 Sat

Young W. Lim Conditions 2023-05-06 Sat 1 / 135

Outline

1 Based on

2 Carry and Borrow
Carry and Overflow
Borrow and Subtraction
ADC and SBB instructions
INC and DEC instructions

3 Condition Codes
Condition Codes
Carry flag and overflow flag in binary arithmetic

4 Accessing the Conditon Codes

Young W. Lim Conditions 2023-05-06 Sat 2 / 135

Based on

1 "Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding

1 "Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Conditions 2023-05-06 Sat 3 / 135

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Conditions 2023-05-06 Sat 4 / 135

Carry Flag (1)

When numbers are added and subtracted,
carry flag CF represents

9th bit, if 8-bit numbers added
17th bit, if 16-bit numbers added
33rd bit, if 32-bit numbers added and so on.

With addition, the carry flag CF records
a carry out of the high order bit. For example,
mov al, -1 ; AL = 0x1111111
add al, 1 ; AL = 0x0000000, ZF and CF flags are set to 1

http://www.c-jump.com/CIS77/ASM/Flags/F77_0030_carry_flag.htm

Young W. Lim Conditions 2023-05-06 Sat 5 / 135

Carry Flag (2)

When a larger number is subtracted from the smaller one,
the carry flag CF indicates a borrow. For example,
mov al, 6 ; AL = 0x00000110
sub al, 9 ; AL = -3, SF and CF flags are set to 1

; 0x00000110 (6)
; 0x00001001 (9) 0x11110111 (-9)
; 0x11111101 (6-9) 0x00000011 (3)

The result is -3, represented internally
as 0FDh (binary 11111101).

http://www.c-jump.com/CIS77/ASM/Flags/F77_0030_carry_flag.htm

Young W. Lim Conditions 2023-05-06 Sat 6 / 135

Overflow Fslag (1)

Overflow occurs with respect to the size of the data type
that must accommodate the result.

Overflow indicates that the result was
too large, if positive
too small, if negative

to fit in the original data type

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 7 / 135

Overflow Flag (2)

When two signed 2’s complement numbers are added,
the overflow flag OF indicates one of the following:

both operands are positive and the result is negative
both operands are negative and the result is positive

When two unsigned numbers are added,
the carry flag CF indicates an overflow

there is a carry out of the leftmost (most significant) bit.

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 8 / 135

Overflow Flag (3)

Computers don’t differentiate
between signed and unsigned binary numbers.

This makes logic circuits fast.

programmers must distinguish
between signed and unsigned

must distinguish them
when detecting an overflow after addition or subtraction.

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 9 / 135

Overflow Flag (4)

correct approach to detect the overflow
Overflow when adding signed numbers
is indicated by the overflow flag, OF
Overflow when adding unsigned numbers
is indicated by the carry flag, CF

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 10 / 135

Overflow Flag (5)

.DATA
mem8 BYTE 39 ; 0010 0111 27

;
.CODE

; Addition +
; signed unsigned binary hex 2’s complement

mov al, 26 ; 26 26 0001 1010 1A
inc al ; +1 +1 0000 0001 01

; ---- ----
; 27 27 0001 1011 1B

add al, 76 ; +76 +76 0100 1100 4C
; ---- ----
; 103 103 0110 0111 67

add al, [mem8] ; +39 +39 0010 0111 27
; ---- ----

mov ah, al ; -114 142 1000 1110 8E (OF) (SF) 0111 0010
add al, ah ; + -114 +142 1000 1110 8E 0111 0010

; ---- ----
; 28 28 0001 1100 1C (OF) (CF)

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 11 / 135

Overflow Flag (6)

; Subtraction- -
; signed unsigned binary hex 2’s complement

mov al, 95 ; 95 95 0101 1111 5F
dec al ; - 1 - 1 1111 1111 FF 0000 0001

; ---- ----
; 94 94 0101 1110 5E

sub al, 23 ; - 23 - 23 1110 1001 E9 0001 0111
; ---- ----
; 71 71 0100 0111 47

mov [mem8],122 ;
sub al, [mem8] ; - 122 - 122 1000 0110 7A 0111 1010

; ---- ----
; -51 205 1100 1101 CD (SF) (CF) 0011 0011

mov ah, 119 ;
sub al, ah ; - 119 - 119 1000 1001 77 0111 0111

; ---- ----
; 86 86 0101 0110 56 (OF)

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 12 / 135

Overflow Flag (7)

assume 8-bit data registers are used

(OF) overflow flag :
the result is too large to fit in the 8-bit destination operand

the sum of two positive signed operands exceeds 127
interpreted as a negative number
the difference of two negative operands is less than -128
interpreted as a positive number

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 13 / 135

Overflow Flag ()

assume 8-bit data registers are used

(CF) carry flag
the sum of two unsigned operands exceeded 255

(SF) sign flag
result goes below 0

http://www.c-jump.com/CIS77/ASM/Flags/F77_0040_overflow.htm

Young W. Lim Conditions 2023-05-06 Sat 14 / 135

Logical operator ! and bitwise complement operator ~

Output values
logical operator (!) returns either 1 or 0
bitwise complement operator (~) returns 1’s complement

Input values
in C, any non-zero value is considered as True
in C, only zero value is considered as False

b = 0x00110011 (True) C = 0x00000001 (True)

~b = 0x11001100 (True) ~C = 0x11111110 (True)
!b = 0x00000000 (False) !C = 0x00000000 (False)

b = 0x00000000 (False) C = 0x00000000 (False)

~b = 0x11111111 (True) ~C = 0x11111111 (True)
!b = 0x00000001 (True) !C = 0x00000001 (True)

Young W. Lim Conditions 2023-05-06 Sat 15 / 135

Assumption on a, b, and C

two operands a and b are n-bit (8, 16, or 32-bit)
the carry flag C is 1-bit

to negate n-bit b, use ~b

to negate 1-bit C, use !C

1 - C = !C

Young W. Lim Conditions 2023-05-06 Sat 16 / 135

Transformed addition

given 2’s complement,
a subtraction operation can be
transformed into an addition operation:

z = a - b
= a + (-b)
= a + ~b + 1

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 17 / 135

Carry-out of the transformed addition

the carry out Cout is set / reset according to
the transformed addition a + ~b +1
of a - b subtraction operation

Cout = 0 : when borrow (a < b)
Cout = 1 : when no borrow (a ≥ b)

z = 0 - 1 borrow occurs since 0 < 1
= 0 + fffffffe + 1 the transformed addition

Cout:z = 0:ffffffff Cout = 0 (carry-out clear)
z = 0 - 0 no borrow occurs since 0 >= 0

= 0 + ffffffff + 1 the transformed addtion
Cout:z = 1:00000000 Cout = 1 (carry-out set)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 18 / 135

Inverted carry of the transformed addition

the carry out Cout is set / reset according to
the transformed addition a + ~b + 1
of a - b subtraction operation

inverted carry C = !Cout
C = 1 : when borrow (a < b)
C = 0 : when no borrow (a ≥ b)

z = 0 - 1 borrow occurs since 0 < 1
= 0 + fffffffe + 1 the transformed addition

Cout:z = 0:ffffffff C = 1 (inverted carry set)
z = 0 - 0 no borrow occurs since 0 >= 0

= 0 + ffffffff + 1 the transformed addtion
Cout:z = 1:00000000 C = 0 (inverted carry clear)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 19 / 135

Binary adder

the transformed addition is performed
by a n-bit binary adder
inputs

n-bit augend X
n-bit addend Y
1-bit carry in Cin

outputs
1-bit carry out Cout
n-bit sum S

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 20 / 135

Multi-word addition

for 4n-bit addition

using 4 n-bit binary adders : 4 hardware replications
Cout0, S0 ← X0 + Y0 + Cin0
Cout1, S1 ← X1 + Y1 + Cin1
Cout2, S2 ← X2 + Y2 + Cin2
Cout3, S3 ← X3 + Y3 + Cin3

serial connection
Cin3 ← Cout2, Cin2 ← Cout1 Cin1 ← Cout0,

using only one n-bit binary adder : 4 software iterations
Cout ,S ← X + Y + Cin

feedback connection
Cin ← Cout

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 21 / 135

Transformed addition with Cin

the carry out Cout is set / reset according to
the transformed addition a + ~b + Cin
which is a + ~b + Cout in a multi-word addition

in the inverted carry sytem
C = !Cout : inverted carry
Cin = !C : double negation (Cin ← Cout)
then a + ~b + Cout becomes a + ~b + !C

in the normal carry sytem
C = Cout : normal carry
Cin = C : simple feedback (Cin ← Cout)
then a + ~b + Cout becomes a + ~b + C

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 22 / 135

Transformed addition in a multi-word operation

the carry out Cout is set / reset according to
the transformed addition a + ~b + Cin
which is a + ~b + Cout in a multi-word addition

in the inverted carry sytem
a + ~b + Cout becomes a + ~b + !C
a + ~b + !C = a + ~b + 1 - C = a - b - C
therefore, a - b + !C is the transformed addition
of a - b - C subtraction operation

in the normal carry sytem
a + ~b + Cout becomes a + ~b + C
a + ~b + C = a + ~b + 1 - !C = a - b - !C
therefore, a - b + C is the transformed addition
of a - b - !C subtraction operation

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 23 / 135

Borrow operation in a multi-word operation

the carry out Cout is set / reset according to
the transformed addition a + ~b + Cin
which is a + ~b + Cout in a multi-word addition

in the inverted carry sytem
a + ~b + Cout becomes a + ~b + !C
a - b - C subtraction operation
C is considered as a borrow flag

in the normal carry sytem
a + ~b + Cout becomes a + ~b + C
a - b - !C subtraction operation
!C is considered as a borrow flag

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 24 / 135

Inverted carry and normal carry systems

SBB (subtract with borrow, x86 instruction)

a + ~b + Cout !Cout as borrow
C = !Cout inverted carry
Cin = !C double negation (Cin ← Cout)
a + ~b + !C subtract with borrow (a - b - C)
B = C borrow flag (= C)

SBC (subtract with carry, ARM instruction)

a + ~b + Cout Cout as carry
C = Cout normal carry
Cin = C simple feedback (Cin ← Cout)
a + ~b + C subtract with carry (a - b - !C)
B = !C borrow flag (= !C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 25 / 135

Carry updating in subtraction only

subtract without borrowing operation a - b
the x86 uses inverted carry system

subtraction without borrowing : a - b - 0 = a - b - C (C=0)
the transformed addition : a + ~b + 1 = a + ~b + !C
carry C is the inverted carry out of the transformed addition
carry C is set when a < b (borrow occurs)

the ARM uses normal carry system
subtraction without borrowing : a - b - 0 = a - b - !C (C=1)
the transformed addition : a + ~b + 1 = a + ~b + C
carry C is the normal carry out of the transformed addition
carry C is clear when a < b (borrow occurs)

x86 inverted carry
new C = 1 when a < b borrow
new C = 0 when a ≥ b
ARM normal carry
new C = 0 when a < b borrow
new C = 1 when a ≥ b

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc
Young W. Lim Conditions 2023-05-06 Sat 26 / 135

Carry updating in subtraction with borrowing

subtract with borrowing operation a - b - 1
the x86 uses inverted carry system

subtraction with borrowing : a - b - 1 = a - b - C (C=1)
the transformed addition : a + ~b + 0 = a + ~b + !C
carry C is the inverted carry out of the transformed addition
carry C is set when a < (b+C) (borrow occurs)

the ARM uses normal carry system
subtraction with borrowing : a + b - 1 = a - b - !C (C=0)
the transformed addition : a + ~b + 0 = a + ~b + C
carry C is the normal carry out of the transformed addition
carry C is clear when a < (b+!C) (borrow occurs)

x86 inverted carry
new C = 1 when a < (b+C) borrow
new C = 0 when a ≥ (b+C)
ARM normal carry
new C = 0 when a < (b+!C) borrow
new C = 1 when a ≥ (b+!C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc
Young W. Lim Conditions 2023-05-06 Sat 27 / 135

Performing a borrow operation in x86 and ARM

borrow operation a - b - BORROW

x86 inverted carry system C = inverted carry = borrow
SBB subtraction with borrow a - b - C (borrow = C)

the transformed addition = a + ~b + !C

ARM normal carry system C = normal carry = not(borrow)
SBC subtraction with carry a - b - !C (borrow = !C)

the transformed addition = a + ~b + C

x86 inverted carry
new C = 1 when a < (b+C) borrow
new C = 0 when a ≥ (b+C)
ARM normal carry
new C = 0 when a < (b+!C) borrow
new C = 1 when a ≥ (b+!C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 28 / 135

The same transformed addition in x86 and ARM

borrow operation a - b - BORROW
x86 SBB subtraction with borrow inverted carry system

borrow = inverted carry C1

a - b - C1 = a + ~b + !C1

substitute C1 with !C2 substitute C1 with !C2

a - b - !C2 = a + ~b + C2

ARM SBC subtract with carry normal carry system
borrow = not (carry) = !C2

a - b - !C2 = a + ~b + C2

x86 inverted carry C1 (= !C2)
new C1 = 1 when a < (b+C) borrow
new C1 = 0 when a ≥ (b+C)
ARM normal carry C2 (= !C1)
new C2 = 0 when a < (b+!C) borrow
new C2 = 1 when a ≥ (b+!C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc
Young W. Lim Conditions 2023-05-06 Sat 29 / 135

x86 addition / subtraction instructions

add add src, dest dest + src → dest
subtract sub src, dest dest – src → dest
add with carry adc src, dest dest + src + CF → dest
subtract with borrow sbb src, dest dest – src – CF → dest

https://en.wikibooks.org/wiki/X86_Assembly/Arithmetic

Young W. Lim Conditions 2023-05-06 Sat 30 / 135

ARM addition / subtraction instructions

Add ADD Rd, Rn, Op2 Rd ← Rn + Op2
Subtract SUB Rd, Rn, Op2 Rd ← Rn – Op2
Add with Carry ADC Rd, Rn, Op2 Rd ← Rn + Op2 + C
Subtract with Carry SBC Rd, Rn, Op2 Rd ← Rn – Op2 – !C
Reverse Subtract RSB Rd, Rn, Op2 Rd ← Op2 – Rn
Reverse Subtract wiht Carry RSC Rd, Rn, 0 Rd ← Op2 – Rn – !C

https://www.davespace.co.uk/arm/introduction-to-arm/arithmetic.html

Young W. Lim Conditions 2023-05-06 Sat 31 / 135

(1) Subtraction and transformed addition

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + 1 - C = a + ~b + !C

a - b - C (subtraction)
C is used as the borrow of a previous subtraction
a + ~b + !C (transformed addition)
!C is the carry-in of the transformed addition

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + 1 - !C = a + ~b + C

a - b - !C (subtraction)
!C is used as the borrow of a previous subtraction
a + ~b + C (transformed addition)
C is the carry-in of the transformed addition

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 32 / 135

(2) Carry in and carry out of an adder

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + 1 - C
= a + ~b + !C : the transformed addition

C is the inverted carry-out of the transformed addition
!C is the carry-in of the transformed addition
C is updated as a result of the transformed addition
C is used as a borrow flag

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + 1 - !C
= a + ~b + C : the transformed addition

C is the normal carry-out of the transformed addition
C is the carry-in of the transformed addition
C is updated as a result of the transformed addition
!C is used as a borrow flag

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 33 / 135

(3) Borrow operation

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + !C

C = borrow
!C = Cin of the transformed addition

if read old C = 0 no borrow perform a - b - 0 = a + ~b + 1
if read old C = 1 borrow perform a - b - 1 = a + ~b + 0

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + C

!C = borrow
C = Cin of the transformed addition

if read old C = 0 borrow perform a - b - 1 = a + ~b + 0
if read old C = 1 no borrow perform a - b - 0 = a + ~b + 1

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 34 / 135

(4) Carry updating U

SBB (subtract with borrow, x86 instruction)
a - b - C = a + ~b + !C

new C = inverted Cout of the transformed addition
new C = borrow for the next stage

write new C = 0 no borrow if a ≥ (b + old C)
write new C = 1 borrow if a < (b + old C)

SBC (subtract with carry, ARM instruction)
a - b - !C = a + ~b + C

new C = normal Cout of the transformed addition
new !C = borrow for next stage

write new C = 0 borrow if a < (b + old !C)
write new C = 1 no borrow if a ≥ (b + old !C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 35 / 135

(5) SBB and SBC instructions ~

SBB (subtract with borrow, x86 instruction)
borrow is carry (CF)

sbb src, dest (dest - src - CF → dest)

new carry is set to the inverted carry of the transformed addition
write new CF = 0 no borrow if dest ≥ (src + old CF)
write new CF = 1 borrow if dest < (src + old CF)

SBC (subtract with carry, ARM instruction)
borrow is not carry (!C)

SBC Rd, Rn, Op2 (Rd ← Rn - Op2 - !C)

new carry is set to the normal carry of thelP transformed addition
write new CF = 0 borrow if Rn < (Op2 + old !C)
write new CF = 1 no borrow if Rn ≥ (Op2 + old !C)

https://stackoverflow.com/questions/41253124/i-cant-understand-some-instructions-in-arm-sbc-rsc

Young W. Lim Conditions 2023-05-06 Sat 36 / 135

SBB, SBC, and SUB instructions

1 Subtract with borrow (SBB, x86, inverted carry, borrow=C)

a - b - C = a + ~b + 1 - C = a + ~b + !C

C = 0 no borrow a + ~b + 1
C = 1 borrow a + ~b + 0 (B = C)

1 Subtract with carry (SBC, ARM, normal carry, borrow=!C)

a - b - !C = a + ~b + 1 - !C = a + ~b + C

C = 0 borrow a + ~b + 0 (B = !C)
C = 1 no borrow a + ~b + 1

1 Subtract without carry and borrow
a - b = a + ~b + 1

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 37 / 135

Subtraction with borrowing

SBB (x86) SBC (ARM)
inverted carry C normal carry C
Borrow when old C=1 Borrow when old C=0

subtraction a - b - C a - b - !C
old C = 0 a - b - 0 a - b - 1 (B)
old C = 1 a - b - 1 (B) a - b - 0
implementation a + ~b + !C a + ~b + C
old C = 0 a + ~b + 1 a + ~b + 0 (B)
old C = 1 a + ~b + 0 (B) a + ~b + 1
carry updating a < (b + C) a ≥ (b + !C)
new C = 0 a ≥ (b + old C) a < (b + old !C)
new C = 1 a < (b + old C) a ≥ (b + old !C)

old C is to be read for a subtraction with borrowing operation

new C is to be written as a result of a subtraction operation

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 38 / 135

Subtraction only

SUB (x86) SUB (ARM)
inverted carry C normal carry C
no Borrow, old C=0 no Borrow, old C=1

subtraction a - b - C a - b - !C
old C = 0 a - b - 0 (nB)
old C = 1 a - b - 0 (nB)
implementation a + ~b + !C a + ~b + C
old C = 0 a + ~b + 1 (nB)
old C = 1 a + ~b + 1 (nB)
carry updating a < b a ≥ b
new C = 0 a ≥ b a < b
new C = 1 a < b a ≥ b

SUB is compatible with SBB when old C=0 (x86)

SUB is compatible with SBC when old C=1 (ARM)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 39 / 135

x86 SBB - Subtraction with borrowing

a SBB (SuBtract with Borrow) x86 instruction
the inverted carry C is used as a borrow flag
a - b - C

replace a - b with a + ~b + 1, then
(a + ~b + 1) - C = a + ~b + (1 - C)

in an ALU adder implentation,
a + ~b + !C is computed

the carry out of the ALU adder is inverted (inverted carry C)
inverted carry C is negated to be used as a carry input (!C)

the carry bit is updated
C = 0 if a >= (b+C) (no borrow)
C = 1 if a < (b+C) (borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 40 / 135

x86 SUB - Subtraction only

a SUB x86 instruction
performs a - b = a - b - 0 = a - b - C
as if the borrow bit were clear (C = 0)

computes a - b as
a + ~b + 1 = a + ~b + !0 = a + ~b + !C

the carry bit is updated
C = 0 if a >= b (no borrow)
C = 1 if a < b (borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 41 / 135

ARM SBC - Subtraction with borrowing

a SBC (SuBtract with Carry) ARM instruction
the normal carry C is negated to be used as a borrow flag (!C)
a - b - !C

replace a - b with a + ~b + 1, then
(a + ~b + 1) - !C = a + ~b + (1 - !C)

in an ALU adder implentation,
a + ~b + C is computed

the carry out of the ALU adder is used directly (normal carry C)
normal carry C is used directly as a carry input (C)

the carry bit is updated
C = 0 if a < (b+!C) (borrow)
C = 1 if a >= (b+!C) (no borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 42 / 135

ARM SUB - Subtraction only

a SUB ARM instruction
performs a - b = a - b - 0 = a - b - !C
as if the borrow bit were clear (!C = 0)

computes a - b as
a + ~b + 1 = a + ~b + C

the carry bit is updated
C = 0 if a < b (borrow)
C = 1 if a >= b (!B = C, no borrow)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 43 / 135

Subtraction methods of various processors (1)

the first approach : subtract with borrow
The 8080, 6800, Z80, 8051, x86 and 68k families (among others)
use a borrow bit.

the second approach : subtract with carry
The System/360, 6502, MSP430, COP8, ARM and PowerPC
processors use this convention.
The 6502 is a particularly well-known example
because it does not have a subtract without carry operation,
so programmers must ensure that the carry flag is set
before every subtract operation where a borrow is not required.

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 44 / 135

Subtraction methods of various processors (2)

However, there are exceptions in both directions;
the VAX, NS320xx, and Atmel AVR architectures

use the borrow bit convention (inverted carry),
a - b - C = a + ~b + !C operation
is called subtract with carry
(SBWC, SUBC and SBC).

The PA-RISC and PICmicro architectures
use the carry bit convention (normal carry),
a - b - !C = a + ~b + C operation
is called subtract with borrow
(SUBB and SUBWFB).

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2023-05-06 Sat 45 / 135

ADC instruction (1)

The ADC (add with carry) instruction adds
both a source operand and the contents of the Carry flag
to a destination operand:
ADC op1, op2 ; op1 += op2, op1 += CF

The instruction formats are the same
as for the ADD instruction:
ADC reg, reg
ADC mem, reg
ADC reg, mem
ADC mem, imm
ADC reg, imm

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Conditions 2023-05-06 Sat 46 / 135

ADC instruction (2)

The ADC instruction does not distinguish
between signed or unsigned operands.
Instead, the processor evaluates the result
for both data types and sets

OF flag to indicate a carry out from the signed result.
CF flag to indicate a carry out from the unsigned result.

The sign flag SF indicates the sign of the signed result.
The ADC instruction is usually executed
as part of a chained multibyte or multiword addition,
in which an ADD or ADC instruction is followed
by another ADC instruction.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Conditions 2023-05-06 Sat 47 / 135

ADC instruction (3)

The following fragment adds two 8-bit integers (FFh + FFh),
producing a 16-bit sum in DL:AL, which is 01h:FEh.
mov dl, 0
mov al, 0FFh
add al, 0FFh ; AL = FEh, CF = 1
adc dl, 0 ; DL += CF, add "leftover" carry

Similarly, the following instructions add two 32-bit integers
(FFFFFFFFh + FFFFFFFFh).
The result is a 64-bit sum in EDX:EAX, 0000000lh:FFFFFFFEh,
mov edx, 0
mov eax, 0FFFFFFFFh
add eax, 0FFFFFFFFh
adc edx, 0 ; EDX += CF, add "leftover" carry

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Conditions 2023-05-06 Sat 48 / 135

ADC instruction (4)

The following instructions add two 64-bit numbers
received in EBX:EAX and EDX:ECX:

The result is returned in EBX:EAX.
Overflow/underflow conditions are indicated by the Carry flag.
add eax, ecx ; add low parts EAX += ECX, set CF
adc ebx, edx ; add high parts EBX += EDX, EBX += CF
; The result is in EBX:EAX
; NOTE: check CF or OF for overflow (*)

The 64-bit subtraction is also simple and similar to the 64-bit addition:
sub eax, ecx ; subtract low parts EAX -= ECX, set CF (borrow)
sbb ebx, edx ; subtract high parts EBX -= EDX, EBX -= CF
; The result is in EBX:EAX
; NOTE: check CF or OF for overflow (*)

The Carry flag CF is normally used for unsigned arithmetic.
The Overflow flag OF is normally used for signed arithmetic.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Conditions 2023-05-06 Sat 49 / 135

SBB instruction (1)

After subtraction, the carry flag CF = 1
indicates a need for a borrow.
The SBB (subtract with borrow) instruction subtracts
both a source operand and the value of the Carry flag CF
from a destination operand:
SBB op1, op2 ; op1 -= op2, op1 -= CF

The possible operands are the same as for the ADC instruction.
The following fragment of code performs 64-bit subtraction:
mov edx, 1 ; upper half
mov eax, 0 ; lower half
sub eax, 1 ; subtract 1 from the lower half, set CF.
sbb edx, 0 ; subtract carry CF from the upper half.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Conditions 2023-05-06 Sat 50 / 135

SBB instruction (2)

The example logic:
Sets EDX:EAX to 00000001h:00000000h
Subtracts 1 from the value in EDX:EAX

1 The lower 32 bits are subtracted first, setting the Carry flag CF
2 The upper 32 bits are subtracted next, including the Carry flag.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Conditions 2023-05-06 Sat 51 / 135

SBB instruction (3)

When an immediate value is used in SBB as an operand,
it is sign-extended to the length of the destination operand.
The SBB instruction does not distinguish
between signed or unsigned operands.
Instead, the processor evaluates the result
for both data types and sets the

OF flag to indicate a borrow in the signed result.
CF flag to indicate a borrow in the unsigned result.

The SF flag indicates the sign of the signed result.
The SBB instruction is usually executed
as part of a chained multibyte or multiword subtraction,
in which a SUB or SBB instruction is
followed by another SBB instruction.

http://www.c-jump.com/CIS77/MLabs/M11arithmetic/M11_0180_sbb_instruction.htm

Young W. Lim Conditions 2023-05-06 Sat 52 / 135

INC / DEC (1)

The INC instruction adds one to the destination operand,
while preserving the state of the carry flag CF:

The destination operand can be a register or a memory location.
This instruction allows a loop counter to be updated without disturbing
the CF flag.
(Use ADD instruction with an immediate operand of 1 to perform an
increment operation that does update the CF flag.)

The DEC instruction subtracts one from the destination operand,
while preserving the state of the CF flag.
(To perform a decrement operation that does update the CF flag, use
a SUB instruction with an immediate operand of 1.)

http://www.c-jump.com/CIS77/ASM/Flags/F77_0070_inc_dec.htm

Young W. Lim Conditions 2023-05-06 Sat 53 / 135

INC / DEC (2)

Especially useful for incrementing and decrementing counters.
A register is the best place to keep a counter.
The INC and DEC instructions

always treat integers as unsigned values
never update the carry flag CF, which would otherwise (i.e. ADD and
SUB) be updated for carries and borrows.

The instructions affect the OF, SF, ZF, AF, and PF flags just like
addition and subtraction of one.

http://www.c-jump.com/CIS77/ASM/Flags/F77_0070_inc_dec.htm

Young W. Lim Conditions 2023-05-06 Sat 54 / 135

INC / DEC (3)

xor al, al ; Sets AL = 0. XOR instruction always clears OF and CF flags.
mov bl, 0FEh
inc bl ; 0FFh SF = 1, CF flag not affected.
inc bl ; 000h SF = 0, ZF = 1, CF flag not affected.

BL 1111 1110 (OxFE) Carry Flag 0
INC BL 1111 1111 (0xFF) Carry Flag 0
INC BL 0000 0000 (0x00) Carry Flag 0

http://www.c-jump.com/CIS77/ASM/Flags/F77_0070_inc_dec.htm

Young W. Lim Conditions 2023-05-06 Sat 55 / 135

TOC: Conditional codes

Young W. Lim Conditions 2023-05-06 Sat 56 / 135

Condition codes (1)

When the x86 Arithmetic Logic Unit (ALU)
performs operations like NOT and ADD,
it flags the results of these operations
("became zero", "overflowed", "became negative")
in a special 16-bit FLAGS register
32-bit processors upgraded this to 32 bits (EFLAGS)
64-bit processors upgraded this to 64 bits (RFLAGS)

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-05-06 Sat 57 / 135

Condition codes (2)

Condition Code Name Definition
E, Z Equal, Zero ZF == 1
S Overflow OF == 1
P Signed SF == 1
O Parity PF == 1
NE, NZ Not Equal, Not Zero ZF == 0
NO No Overflow OF == 0
NP Not Signed SF == 0
NS No Parity PF == 0

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-05-06 Sat 58 / 135

Condition codes (3)

Condition Code Name Definition
NC, No Carry, CF==0
AE, NB Above or Equal, Not Below CF==0
BE, NA Above, Not Below or Equal CF==0 and ZF==0
A, NBE Below or Equal, Not Above CF==1 or ZF==1
GE, NL Greater or Equal, Not Less SF==OF
L, NGE Less, Not Greater or Equal SF!=OF
G, NLE Greater, Not Less or Equal ZF==0 and SF==OF
LE, NG Less or Equal, Not Greater ZF==1 or SF!=OF

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 59 / 135

Condition codes (4) ZF (zero flag)

Set whenever the previous arithmetic result was zero.
Can be used by

jz jump if last result was zero
jnz jump if last result was not zero
je jump if equal, alias of jz
jne jump if not equal, alias of jnz

because if the difference is zero,
then the two values are equal

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 60 / 135

Condition codes (5) CF (carry flag)

Contains the bit that carries out of an addition or subtraction.
Can be used by the jc (jump if carry flagis set) instruction.
Set by all the arithmetic instructions.
Can be added into another arithmetic operation
with adc (add with carry).

For example, you can preserve the bit overflowing
out of an add using a subsequent adc
For example, here we do a tiny 16-bit add between cx and si,
that overflows. We can catch the overflow bit and
fold it into the next higher add:

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 61 / 135

Condition codes (6) CF (carry flag)

adc is used in the compiler’s implementation of
the 64-bit long long datatype,
and in general in "multiple precision arithmetic" software,
like the GNU Multiple Precision Arithmetic Library.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 62 / 135

Condition codes (7) CF (carry flag)

The carry flag (or overflow flag below) could also be used
to implement overflow checking in a careful compiler, like Java!
The carry and zero flags are also used
by the unsigned comparison instructions:

jb jump if unsigned below
jbe jump if unsigned below or equal
ja jump if unsigned above
jae jump if unsigned above or equal

in a fairly obvious way.
For example, a carry means a negative result, so a<b.
The zero flag means a==b

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 63 / 135

Condition codes (8) SF (sign flag)

indicates a negative signed result.
Used together with OF to implement signed comparison.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 64 / 135

Condition codes (9) OF (overflow flag)

Set by subtract, add, and compare, and
used in the signed comparison instructions

jl jump if less than
jle jump if less than or equal to
jg jump if greater than
jge jump if greater than or equal to

instructions.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 65 / 135

Condition codes (10) OF (overflow flag)

jae: jump if above or equal
unsigned >=
jump if CF==0
compute a - b
if a - b is positive or zero (a >= b)
then CF==0 and jump is taken
if a - b is negative (a < b)
then CF==1, and jump is not taken

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 66 / 135

Condition codes (11) OF (overflow flag)

jge: jump if greater or equal
signed >=
jump if SF==OF
if no overflow occurs in the signed a - b,
then OF==0 and SF is correct
SF==0 (positive result a >= 0)
SF==1 (negative result a < 0)
(jge is the same as jae)
if an overflow occurs in the signed a - b,
then OF==1 and SF is not correct
SF==1 (corrected positive a >= 0)
SF==0 (corrected negative a < 0)
(jge is not the same as jae)

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 67 / 135

Condition codes (12) OF (overflow flag)

jge: jump if greater or equal
signed >=
jump if SF==OF
in a signed compare, a carry happens
if we’re comparing negative numbers,
so CF must not be used
if an overflow occurs, then the sign bit is wrong,
so if OF==1, we compare SF==1,
which flips the comparison back the right way again.

https://www.cs.uaf.edu/2009/fall/cs301/lecture/12_07_flags.html

Young W. Lim Conditions 2023-05-06 Sat 68 / 135

Essential flags

Z Zero flag destination equals zero
S Sign flag destination is negative
C Carry flag unsigned value out of range
O Overflow flag signed value out of range

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 69 / 135

Zero Flag ZF

Whenever the destination operand equals Zero,
the Zero flag is set

ZF examples
movw $1, %cx
subw $1, %cx ; %cx = 0, ZF = 1
movw $0xFFFF, %ax
incw %ax ; AX = 0, ZF = 1
incw %ax ; AX = 1, ZF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 70 / 135

Sign Flag SF

the Sign flag is set when the destination operand is negative
the Sign flag is clear when the destination operand is positive

SF examples
movw $0, %cx
subw $1, %cx ; %cx = -1, SF = 1
addw $2, %cx ; %cx = 1, SF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 71 / 135

Carry Flag CF

Addition : copy carry out of MSB to CF

Subtraction : copy inverted carry out of MSB to CF

INC / DEC : not affect CF
Applying NEG to a nonzero operand sets CF

CF examples
movw $0x00ff, %cx
addw $1, %ax ; %ax = 0x0100, SF = 0, ZF = 0, CF = 0
subw $1, %ax ; %cx = 0x00ff, SF = 0, ZF = 0, CF = 0
addb %1, %al ; %al = 0x00, SF = 0, ZF = 1, CF = 1
movb $0x6c, %bh
addb %0x95, %bh ; %bh = 0x01, SF = 0, ZF = 0, CF = 1

movb $2, %al
subb $3, %al ; %al = 0xff, SF = 1, ZF = 0, CF = 1

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 72 / 135

Overflow Flag OF

the overflow flag is set when the signed result of an operation
is invalid or out of range

case 1: adding two positive operands produces a negative number
case 2: adding two negative operands produces a positive number

OF examples
movb $+127, %al
addb $1, %al ; %al = -128, OF = 1

movb $0x7F, %al
addb $1, %al ; %al = 0x80, OF = 1

movb $0x80, %al ; 0x80 + 0x92 = 0x112
addb $0x92, %al ; %al = 0x12, OF = 1

movb $-2, %al ; 0xfe + 0x7f = 0x17d
addb $+127 %al ; %al = 0x7d, OF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 73 / 135

Signed / Unsigned Integers

all CPU instructions operate exactly the same
on signed and unsigned integers

the CPU canot distinguish between
signed and unsigned integers

the programmer are soley responsible for
using the correct data type with each instruciton

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 74 / 135

Overflow / Carry Flags (1)

ADD instruction
CF : (Carry out of the MSB)
OF : (Carry out of the MSB)

⊕
(Carry into the MSB)

SUB instruction
CF : ~(Carry out of the MSB)
OF : (Carry out of the MSB)

⊕
(Carry into the MSB)

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 75 / 135

Overflow / Carry Flags (2)

ADD SUB

CF Cn Cn

OF Cn
⊕

Cn−1 Cn
⊕

Cn−1

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2023-05-06 Sat 76 / 135

Condition Codes (1)

condition code registers describe attributes
of the most recent arithmetic or logical operation
these registers can be tested to perform conditional branches
the most useful condition codes are as belows

CF Carry Flag
ZF Zero Flag
SF Sign Flag
OF Overflow Flag

Young W. Lim Conditions 2023-05-06 Sat 77 / 135

Condition Codes (2)

as a result of the most recent operation

CF a carry was generated out of the msb
used to detect overflow for unsigned operations

ZF a zero was yielded

SF a negative value was yielded

OF a 2’s complement overflow was happened
either neagtive or positive

Young W. Lim Conditions 2023-05-06 Sat 78 / 135

Condition Codes and c = a+b (1)

assume addl is used to perform t = a + b
and a, b, t are of type int

CF unsigned overflow (unsigned t) < (unsigned a)
ZF zero (t == 0)
SF negative (t < 0)
OF signed overflow (a < 0 == b < 0) && (t < 0 != a < 0)

Young W. Lim Conditions 2023-05-06 Sat 79 / 135

Condition Codes and c = a+b (2)

CF (unsigned t) < (unsigned a) mag(t) < mag(a) if C=1
ZF (t == 0) zero t
SF (t < 0) negative t
OF (a<0 = b<0) && (t<0 ! a<0) sign(a) = sign(b) ! sign(t)

Young W. Lim Conditions 2023-05-06 Sat 80 / 135

Setting condition codes without altering registers (1)

Compare and test
cmpb S2, S1 S1 - S2 Compare bytes
cmpw S2, S1 S1 - S2 Compare words
cmpl S2, S1 S1 - S2 Compare double words
testb S2, S1 S1 & S2 Test bytes
testw S2, S1 S1 & S2 Test words
testl S2, S1 S1 & S2 Test double words

Young W. Lim Conditions 2023-05-06 Sat 81 / 135

Setting condition codes without altering registers (2)

Compare and test
cmpb S2, S1 -S2 + S1 Compare bytes
cmpw S2, S1 -S2 + S1 Compare words
cmpl S2, S1 -S2 + S1 Compare double words
testb S2, S1 S2 & S1 Test bytes
testw S2, S1 S2 & S1 Test words
testl S2, S1 S2 & S1 Test double words

Young W. Lim Conditions 2023-05-06 Sat 82 / 135

CMP instruction (1)

cmpb op1, op2

cmpw op1, op2

cmpl op1, op2

NULL \leftarrow op2 - op1
subtracts the contents of the src operand op1
from the dest operand op2
discard the results, only the flag register is affected

Young W. Lim Conditions 2023-05-06 Sat 83 / 135

CMP instruction (2)

cmpb op1, op2

cmpw op1, op2

cmpl op1, op2

Condition Signed Compare Unsigned Compare
op1 < op2 ZF == 0 && SF == OF CF == 0 && ZF == 0
op1 < op2= SF == OF CF == 0
op1 = op2= ZF == 1 ZF == 1
op1 > op2= ZF == 1 or SF != OF CF == 1 or ZF ==1
op1 > op2 SF != OF CF ==1

Young W. Lim Conditions 2023-05-06 Sat 84 / 135

TEST instruction

testb src, dest

testw src, dest

testl src, dest

NULL ← dest & src
ands the contents of the src operand with the dest operand
discard the results, only the flag register is affected

Young W. Lim Conditions 2023-05-06 Sat 85 / 135

CF and OF in binary arithmetic (1)

do not confuse the carry flag
with the overflow flag
in integer arithmetic.

the ALU always sets these flags appropriately
when doing any integer math.
these flags can occur on its own, or both together.

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 86 / 135

CF and OF in binary arithmetic (2)

the CPU’s ALU doesn’t care or know
whether signed or unsigned computations are performed;
the ALU just performs integer arithmetic and
sets the flags appropriately.
It’s up to the programmer to know
which flag to check after the arithmetic is done.

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 87 / 135

CF and OF in binary arithmetic (3)

if word is treated as an unsigned number,
the carry flag must be checked to see
if the result is wrong or not
the overflow flag is irrelevant to an unsigned number

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 88 / 135

CF and OF in binary arithmetic (4)

if word is treated as an signed number,
the overflow flag must be checked to see
if the result is wrong or not
the carry flag is irrelevant to an signed number

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 89 / 135

CF and OF in binary arithmetic (5)

In unsigned arithmetic, watch the carry flag to detect errors.
In unsigned arithmetic, the overflow flag tells you nothing interesting.
In signed arithmetic, watch the overflow flag to detect errors.
In signed arithmetic, the carry flag tells you nothing interesting.

carry flag overflow flag
unsigned arithmetic check x
signed arithmetic x check

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 90 / 135

CF and OF in binary arithmetic (6)

Do not confuse the English verb "to overflow"
with the "overflow flag" in the ALU.
The verb "to overflow" is used casually to indicate that
some math result doesn’t fit in the number of bits available;
it could be integer math, or floating-point math, or whatever.
The "overflow flag" is set specifically by the ALU
as described below, and it isn’t the same
as the casual English verb "to overflow".

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 91 / 135

CF and OF in binary arithmetic (7)

In English, we may say "the binary/integer math overflowed the
number of bits available for the result, causing the carry flag to come
on".
Note how this English usage of the verb "to overflow" is not the same
as saying "the overflow flag is on".
A math result can overflow (the verb) the number of bits available
without turning on the ALU "overflow" flag.

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 92 / 135

Carry flag (1)

The rules for setting the carry flag are two:

1 The carry flag is set
if the addition of two numbers causes a carry
out of the most significant (leftmost) bits added.
1111 + 0001 = 0000 (carry flag is turned on)

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 93 / 135

Carry flag (2)

The rules for setting the carry flag are two:

2 The carry (borrow) flag is also set
if the subtraction of two numbers requires a borrow
into the most significant (leftmost) bits subtracted.
0000 - 0001 = 1111 (carry flag is turned on)
unsigned arithmetic

0000 + 1111 = 1111 (2’s complement addition – no carry)
signed arithmetic

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 94 / 135

Carry flag (3)

Otherwise, the carry flag is turned off (zero).
0111 + 0001 = 1000 (carry flag is turned off [zero])
1000 - 0001 = 0111 (carry flag is turned off [zero]
unsigned arithmetic

1000 + 1111 = 0111 (2’s complement addition – carry set)
signed arith

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 95 / 135

Carry flag (4)

In unsigned arithmetic,
watch the carry flag to detect errors.

In signed arithmetic,
the carry flag is useless

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 96 / 135

Overflow flag (1-1)

The rules for setting the overflow flag are two:

1 If the sum of two numbers with the sign bits off
yields a result number with the sign bit on,
the "overflow" flag is turned on.

0100 + 0100 = 1000 (overflow flag is turned on)
0100 - 1100 = 1000 (2’s complement subtraction)

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 97 / 135

Overflow flag (1-2)

The rules for setting the overflow flag are two:

2 If the sum of two numbers with the sign bits on
yields a result number with the sign bit off,
the "overflow" flag is turned on.

1001 + 1001 = 0010 (overflow flag is turned on)
1001 - 0111 = 0010 (2’s complement subtraction)

0111 1000 1001
http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 98 / 135

Overflow flag (2)

Otherwise, the overflow flag is turned off.
0100 + 0001 = 0101 (overflow flag is turned off)
0110 + 1001 = 1111 (overflow flag is turned off)
1000 + 0001 = 1001 (overflow flag is turned off)
1100 + 1100 = 1000 (overflow flag is turned off)

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 99 / 135

Overflow flag (3)

Note that you only need to look at the sign bits (leftmost) of the
three numbers to decide if the overflow flag is turned on or off.
If you are doing two’s complement (signed) arithmetic, overflow flag
on means the answer is wrong - you added two positive numbers and
got a negative, or you added two negative numbers and got a positive.
If you are doing unsigned arithmetic, the overflow flag means nothing
and should be ignored.

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 100 / 135

Overflow flag (4)

The rules for two’s complement detect errors by examining the sign of
the result. A negative and positive added together cannot be wrong,
because the sum is between the addends. Since both of the addends
fit within the allowable range of numbers, and their sum is between
them, it must fit as well. Mixed-sign addition never turns on the
overflow flag.
In signed arithmetic, watch the overflow flag to detect errors. In
unsigned arithmetic, the overflow flag tells you nothing interesting.

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 101 / 135

Calculating Overflow flag - Method 1 (1)

Overflow can only happen
when adding two numbers of the same sign
results in a different sign.

to detect overflow
only the sign bits are considered
the other bits are ignored

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 102 / 135

Calculating Overflow flag - Method 1 (2-1)

with two operands and one result,
three sign bits are considered
23 = 8 possible combinations

only two of 8 cases are considered as overflow
0 0 1 (+, +, -)
1 1 0 (-, -, +)

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 103 / 135

Calculating Overflow flag - Method 1 (2-2)

ADDITION SIGN BITS (num1 + num2)

num1sign num2sign sumsign (num1 + num2)
--

0 0 0
OVER 0 0 1 (adding two positives should be positive)

0 1 0
0 1 1
1 0 0
1 0 1

OVER 1 1 0 (adding two negatives should be negative)
1 1 1

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 104 / 135

Calculating Overflow flag - Method 1 (3-1)

SUBTRACTION SIGN BITS (num1− num2)

num1sign num2sign subsign (num1 - num2)
--

0 0 0
0 0 1
0 1 0

OVER 0 1 1 (subtracting a negative is the same as adding a positive)
OVER 1 0 0 (subtracting a positive is the same as adding a negative)

1 0 1
1 1 0
1 1 1

subtracting a positive / negative number is
the same as adding a negative / positive

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 105 / 135

Calculating Overflow flag - Method 1 (3-2)

addition (num1 + num2)
0 0 1 (+, +, -)
1 1 0 (-, -, +)

subtraction (num1− num2)
0 1 1 (+, -, -)
1 0 0 (-, +, +)

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 106 / 135

Calculating Overflow flag - Method 1 (4)

A computer might contain a small logic gate array
that sets the overflow flag to "1"
iff any one of the above four OV conditions is met.
in signed computations,
adding two numbers of the same sign
must produce a result of the same sign,
otherwise overflow happened.

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 107 / 135

Calculating Overflow flag - Method 2 (1)

When adding two binary values,
consider the binary carry coming
into the leftmost place (into the sign bit)
and the binary carry going out of that leftmost place.
(Carry going out of the leftmost [sign] bit
becomes the CARRY flag in the ALU.)
Overflow in two’s complement may occur,
not when a bit is carried out of the left column,
but when one is carried into it
and no matching carry out occurs.
That is, overflow happens when there is a carry
into the sign bit but no carry out of the sign bit.

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 108 / 135

Calculating Overflow flag - Method 2 (2)

The OVERFLOW flag is the XOR of the carry coming into the sign bit (if
any) with the carry going out of the sign bit (if any). Overflow happens if
the carry in does not equal the carry out.
Examples (2-bit signed 2’s complement binary numbers):
11

+01
===
00

- carry in is 1
- carry out is 1
- 1 XOR 1 = NO OVERFLOW

01
+01
===
10

- carry in is 1
- carry out is 0
- 1 XOR 0 = OVERFLOW!

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txtYoung W. Lim Conditions 2023-05-06 Sat 109 / 135

Calculating Overflow flag - Method 2 (3)

11
+10
===
01

- carry in is 0
- carry out is 1
- 0 XOR 1 = OVERFLOW!

10
+01
===
11

- carry in is 0
- carry out is 0
- 0 XOR 0 = NO OVERFLOW

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 110 / 135

Calculating Overflow flag - Method 2 (4)

Note that this XOR method only works with the binary carry that goes
into the sign bit. If you are working with hexadecimal numbers, or decimal
numbers, or octal numbers, you also have carry; but, the carry doesn’t go
into the sign bit and you can’t XOR that non-binary carry with the
outgoing carry.
http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 111 / 135

Calculating Overflow flag - Method 2 (5)

Hexadecimal addition example (showing that XOR doesn’t work for
hex carry):

8Ah
+8Ah
====
14h

The hexadecimal carry of 1 resulting from A+A does not affect the
sign bit. If you do the math in binary, you’ll see that there is no carry into
the sign bit; but, there is carry out of the sign bit. Therefore, the above
example sets OVERFLOW on. (The example adds two negative numbers
and gets a positive number.)
http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

Young W. Lim Conditions 2023-05-06 Sat 112 / 135

TOC: accessing the condition codes

Young W. Lim Conditions 2023-05-06 Sat 113 / 135

Set (1)

set(e, z) D (equal / zero) D ← ZF
set(ne, nz) D (not equal/ not zero) D ← ~ZF
set(s) D (negative) D ← SF
set(ns) D (non-negative) D ← ~SF
set(g, le) D (greater, signed >) D ← ~(SF^OF)&~ZF
set(ge, nl) D (greater or equal, signed >=) D ← ~(SF^OF)
set(l, nge) D (less, signed <) D ← SF^OF
set(le, ng) D (less or equal, signed <=) D ← (SF^OF) | ZF
set(a, nbe) D (above, usnigned >) D ← ~CF&~ZF
set(ae, nb) D (above or euqal, unsinged >=) D ← ~CF
set(b, nae) D (below, unsigned <) D ← CF
set(be, na) D (below or equal, unsigned <=) D ← CF&~ZF

Young W. Lim Conditions 2023-05-06 Sat 114 / 135

Set (2)

set(e, z) D (equal / zero) D ← ZF
set(s) D (negative) D ← SF
set(g, le) D (greater, signed >) D ← ~(SF^OF)&~ZF
set(l, ge) D (less, signed <) D ← SF^OF
set(a, nbe) D (above, usnigned >) D ← ~CF&~ZF
set(b, nae) D (below, unsigned <) D ← CF

set(ne, nz) D (not equal/ not zero) D ← ~ZF
set(ns) D (non-negative) D ← ~SF
set(ge, nl) D (greater or equal, signed >=) D ← ~(SF^OF)
set(le, ng) D (less or equal, signed <=) D ← (SF^OF) | ZF
set(ae, nb) D (above or euqal, unsinged >=) D ← ~CF
set(be, na) D (below or equal, unsigned <=) D ← CF&~ZF

Young W. Lim Conditions 2023-05-06 Sat 115 / 135

Flag registers (1) - Z, O, S, P

E, Z Equal, Zero ZF == 1
NE, NZ Not Equal, Not Zero ZF == 0
O Overflow OF == 1
NO No Overflow OF == 0
S Signed SF == 1
NS Not Signed SF == 0
P Parity PF == 1
NP No Parity PF == 0

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-05-06 Sat 116 / 135

Flag registers (2) - unsigned arithmetic

C, B Carry, Below, CF == 1
NAE Not Above or Equal
NC, NB No Carry, Not Below, CF == 0
AE Above or Equal
A, NBE Above, Not Below or Equal CF==0 and ZF==0
NA, BE Not Above, Below or Equal CF==1 or ZF==1

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-05-06 Sat 117 / 135

Flag registers (3) - signed arithmetic

GE, NL Greater or Equal, Not Less SF==OF
NGE, L Not Greater or Equal, Less SF!=OF
G, NLE Greater, Not Less or Equal ZF==0 and SF==OF
NG, LE Not Greater, Less or Equal ZF==1 or SF!=OF

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-05-06 Sat 118 / 135

Flag registers (4)

The condition codes are grouped into three blocks :

Z, O, S, P Zero
Overflow
Sign
Parity

unsigned arithmetic Above
Below

signed arithmetic Greater
Less

JB would be "Jump if Below" (unsigned)
JL would be "Jump if Less" (signed)

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-05-06 Sat 119 / 135

Flag registers (3)

In 16 bits, subtracting 1 from 0

from to
0 65,535 unsigned arithmetic
0 -1 signed arithmetic

0x0000 0xFFFF bit representation

It’s only by interpreting the condition codes that the meaning is clear.
1 is subtracted from 0x8000:

from to
32,768 32,767 unsigned arithmetic
-32,768 32,767 signed arithmetic
0x8000 0x7FFF bit representation

(0111 1111 1111 1111 + 1 = 1000 0000 0000 0000)
https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2023-05-06 Sat 120 / 135

Set (3)

accessing the condition codes
to read the condition codes directly
to set an integer register
to perform a conditional branch

based on some combination of condition codes

Young W. Lim Conditions 2023-05-06 Sat 121 / 135

Set (4)

the set instructions set a single byte to 0 or 1
depending on some combination of the condition codes

the destination operand D is
either one of the eight single byte register elements
or a memory location where the single byte is to be stored

to generate a 32-bit result,
the high-order 24-bits must be cleared

Young W. Lim Conditions 2023-05-06 Sat 122 / 135

Set (5)

a typical assembly for a c predicate
; a is in %edx
; b is in %eax

cmpl %eax, %edx ; compare a and b ; (a - b)
setl %al ; set low order byte of %eax to 0 or 1
movzbl %al, %eax ; set remaining bytes of %eax to 0

movzbl instruction is used to clear the high-order three bytes
| set(l, ge) | D | (less, signed <) | D ← SF^OF |

Young W. Lim Conditions 2023-05-06 Sat 123 / 135

movz instruciton (1)

Purpose: To convert an unsigned integer to a wider unsigned integer
opcode src.rx, dst.wy

dst <- zero extended src;

MOVZBW (Move Zero-extended Byte to Word) 8-bit zero BW

MOVZBL (Move Zero-extended Byte to Long) 24-bit zero BL

MOVZWL (Move Zero-extended Word to Long) 16-bit zero WL

Young W. Lim Conditions 2023-05-06 Sat 124 / 135

movz instruciton (2)

MOVZ BW (Move Zero-extended Byte to Word) 8-bit zero
the low 8 bits of the destination are replaced by the source operand
the top 8 bits are set to 0.

MOVZ BL (Move Zero-extended Byte to Long) 24-bit zero
the low 8 bits of the destination are replaced by the source operand.
the top 24 bits are set to 0.

MOVZ WL (Move Zero-extended Word to Long) 16-bit zero
the low 16 bits of the destination are replaced by the source operand.
the top 16 bits are set to 0.

The source operand is unaffected.

Young W. Lim Conditions 2023-05-06 Sat 125 / 135

register operand types (1)

byte 3 byte 2 byte 1 byte 0
%ah %al
%ax_1 %ax_0

%eax_3 %eax_2 %eax_1 %eax_0
%ch %cl
%cx_1 %cx_0

%ecx_3 %ecx_2 %ecx_1 %ecx_0
%dh %dl
%dx_1 %dx_0

%edx_3 %edx_2 %edx_1 %edx_0
%bh %bl
%bx_1 %bx_0

%ebx_3 %ebx_2 %ebx_1 %ebx_0

Young W. Lim Conditions 2023-05-06 Sat 126 / 135

register operand types (2)

byte 3 byte 2 byte 1 byte 0
%si_1 %si_0

%esi_3 %esi_2 %esi_1 %esi_0
%di_1 %di_0

%edi_3 %edi_2 %edi_1 %edi_0
%sp_1 %sp_0

%esp_3 %esp_2 %esp_1 %esp_0
%bp_1 %bp_0

%ebp_3 %ebp_2 %ebp_1 %ebp_0

Young W. Lim Conditions 2023-05-06 Sat 127 / 135

register operand types (3)

byte 3 byte 2 byte 1 byte 0
%ah %al
%ch %cl
%dh %dl
%bh %bl
%ax_1 %ax_0
%cx_1 %cx_0
%dx_1 %dx_0
%bx_1 %bx_0
%si_1 %si_0
%di_1 %di_0
%sp_1 %sp_0
%bp_1 %bp_0

Young W. Lim Conditions 2023-05-06 Sat 128 / 135

register operand types (4)

byte 3 byte 2 byte 1 byte 0
%eax_3 %eax_2 %eax_1 %eax_0
%ecx_3 %ecx_2 %ecx_1 %ecx_0
%edx_3 %edx_2 %edx_1 %edx_0
%ebx_3 %ebx_2 %ebx_1 %ebx_0
%esi_3 %esi_2 %esi_1 %esi_0
%edi_3 %edi_2 %edi_1 %edi_0
%esp_3 %esp_2 %esp_1 %esp_0
%ebp_3 %ebp_2 %ebp_1 %ebp_0

Young W. Lim Conditions 2023-05-06 Sat 129 / 135

Set (6)

for some of the underlying machine instructions,
there are multiple possible names (synonyms),

setg (set greater)
setnle (set not less or equal)

compilers and disassemblers make arbitrary choices
of which names to use

Young W. Lim Conditions 2023-05-06 Sat 130 / 135

Set (7)

although all arithmetic operations set the condition codes,
the descriptions of the different set commands apply
to the case where a comparison instruction has been executed,
setting the condition codes according to the computation
t = a - b

for example, consider the sete, or "Set when equal" instruction
when a = b, we will have t = 0, and hence the zero flag
indicates equality

Young W. Lim Conditions 2023-05-06 Sat 131 / 135

Set (8)

Similarly, consider testing a signed comparison with the setl
or "Set when less"
when a and b are in two’s complement form,
then for a < b we will have a - b < 0
if the true difference were computed
when there is no overflow, this would be indicated by having
the sign flag set

Young W. Lim Conditions 2023-05-06 Sat 132 / 135

Set (9)

when there is positive overflow,
because a - b is a large positive number, however,
we will have t < 0

when there is negative overflow,
because a - b is a small negative number,
we will have t > 0

in either case, the sign flag will indicate the opposite
of the sign of the true difference

Young W. Lim Conditions 2023-05-06 Sat 133 / 135

Set (10)

in either case, the sign flag will indicate the opposite
of the sign of the true difference

hence, the Exclusive-Or of the overflow and sign bits
provides a test for whether a < b

the other signed comparison tests are based
on other combinations of SF ^ OF and ZF

Young W. Lim Conditions 2023-05-06 Sat 134 / 135

Set (11)

for the testing of unsigned comparisons, the carry flag
will be set by the cmpl instruction
when the integer difference a - b of the unsigned arguments
a and b would be negative, that is when
(unsinged) a < (unsigned) b

thus, these tests use combinations of the carry and zero flags

Young W. Lim Conditions 2023-05-06 Sat 135 / 135

	Based on
	Carry and Borrow
	Carry and Overflow
	Borrow and Subtraction
	ADC and SBB instructions
	INC and DEC instructions

	Condition Codes
	Condition Codes
	Carry flag and overflow flag in binary arithmetic

	Accessing the Conditon Codes

