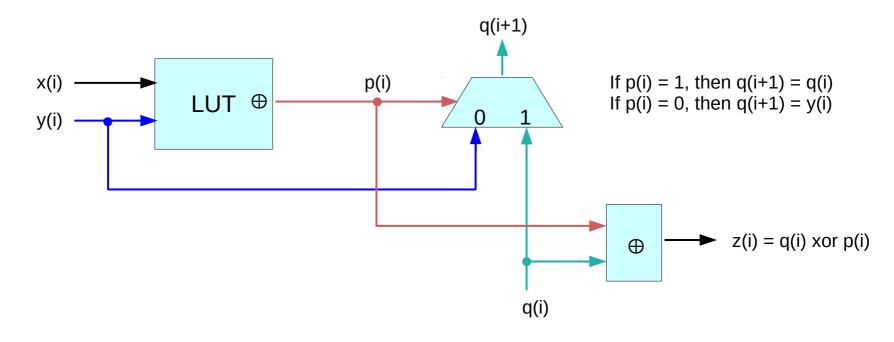
FPGA Carry Chain Adder (1A)

•

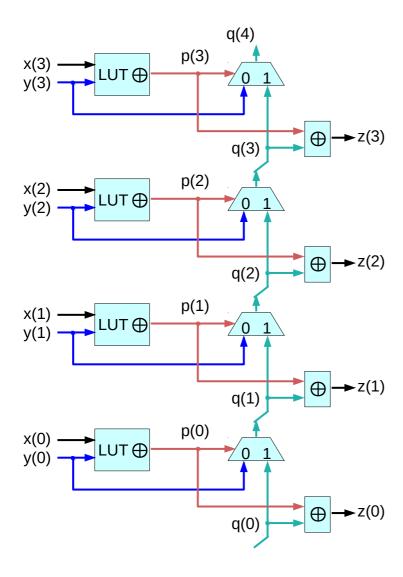

•

Copyright (c) 2010 -- 2020 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.


$$\begin{aligned} s_i &= (a_i \oplus b_i) \oplus c_i = p_i \oplus c_i \\ c_{i+1} &= (a_i \cdot b_i) + (a_i \oplus b_i) c_i = \overline{p_i} \cdot g_i + p_i \cdot c_i = \overline{p_i} \cdot a_i + p_i \cdot c_i = \overline{p_i} \cdot b_i + p_i \cdot c_i \end{aligned}$$

when
$$\overline{p}_i = 1$$
, then $a_i = b_i$
when $g_i = 1$, then $a_i = b_i = 1$

p(i)	0	1
0	0	1
1	1	0

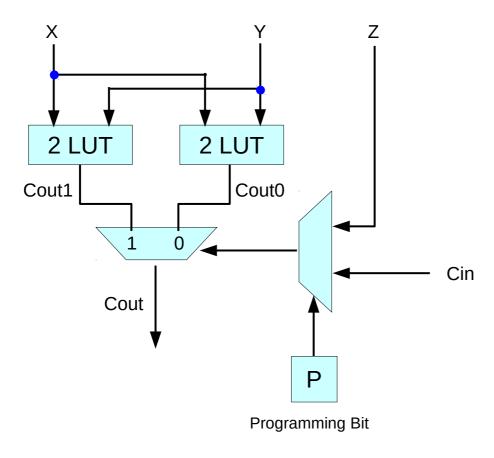
g(i)	0	1
0	0	0
_1	0	1

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

Synthesis of Arithmetic Circuits: FPGA, ASIC and Ebedded Systems, J-P Deschamps et al

FPGA Carry Chain

FPGAs generally contain dedicated computation resources for generating fast adders

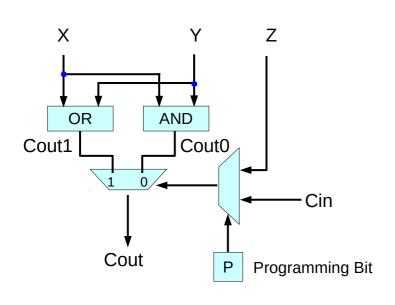

The Virtex family programmable arrays include logic gates (XOR) and multiplexers that along with the general purpose lookup tables allow one to build effective carry-chain adders

The carry chain is made up of multiplexers belonging to adjacent configurable blocks

the lookup table is used for implementing the exclusive or function

$$p(i) = x(i) xor y(i)$$

https://en.wikipedia.org/wiki/Carry-lookahead_adder


Cout1, Cout2: functions of X, Y, Cin

Cout1 = X+Y when Cin=1 Cout0 = X Y when Cin=0

Cout = $(X + Y) Cin + X Y \overline{Cin}$

Cout = P' Cin + G $\overline{\text{Cin}}$... P' = relaxed P

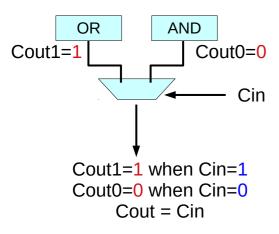
Cout1	Cout0	Cout	Name
0	0	0	Kill
0	1	Cin	Inverse Propagate
1	0	Cin	Propagate
1	1	1	Generate

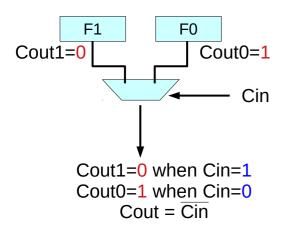
		Cin	Cin	
X	Υ	Cout1	Cout0	
0	0	0	0	$\overline{X} \overline{Y}$
0	1	1	0	$\overline{X}Y$
1	0	1	0	$X\overline{Y}$
1	1	1	1	ΧY

Cout: functions of X, Y, Cin

Cout(X, Y, 1) = Cout1 = X + YCout(X, Y, 0) = Cout0 = X Y

Cout1 = X + Y when Cin=1 Cout0 = XY when Cin=0

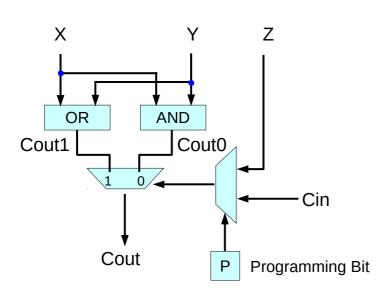

Cout1 = P' $\underline{\text{Cin}}$... P' = relaxed P Cout0 = $\underline{\text{Cin}}$


High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry

If \underline{Cin} , then $\underline{Cout} = (\overline{X} \ Y + X \ \overline{Y} + X \ Y)$ If \underline{Cin} , then $\underline{Cout} = X \ Y$

Cin $(X + Y) + \overline{Cin} X Y$ Cin $(X Y + X \overline{Y} + X Y) + \overline{Cin} X Y$ Cin $(X Y + X \overline{Y}) + (Cin + \overline{Cin}) X Y$ P Cin + G

Cin $(X + \underline{Y}) + \overline{Cin} X Y$ Cin P' + $\overline{Cin} G$... P' : relaxed P



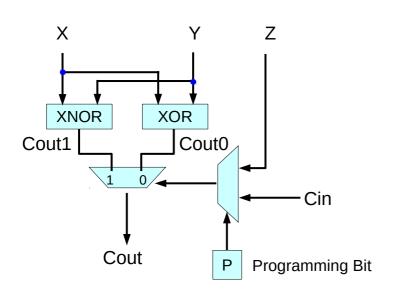
Cout0	Cout1	Cout	Name
0	0	0	Kill
0	1		Propagate
1	0	Cin	Inverse Propagate
1	1	1	Generate

Cout1	Cout0	Cout	Name
0	0	0	Kill
0	1	Cin	Inverse Propagate
1	0	Cin	Propagate
1	1	1	Generate

Carry Chain

Ca	rry Out		
Χ	Υ	Cin	
0	0	Cin	Cin
0	1	Cin	Cin
1	0	Cin	Cin
1	1	Cin	Cin

		Cin	Cin	
Χ	Υ	Cout1	Cout0	
0	0	0	0	$\overline{X} \overline{Y}$
0	1	1	0	$\overline{X}Y$
1	0	1	0	$X\overline{Y}$
1	1	1	1	ΧY


Cout1	Cout0	Cout	Name
0	0	0	Kill
0	1	Cin	Inverse Propagate
1	0	Cin	Propagate
1	1	1	Generate

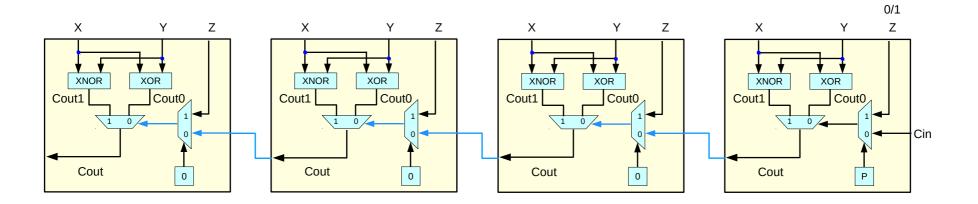
```
Cout1=1 when Cin=1
Cout0=0 when Cin=0
Cout = Cin propage

Cout1=0 when Cin=1
Cout0=1 when Cin=0
```

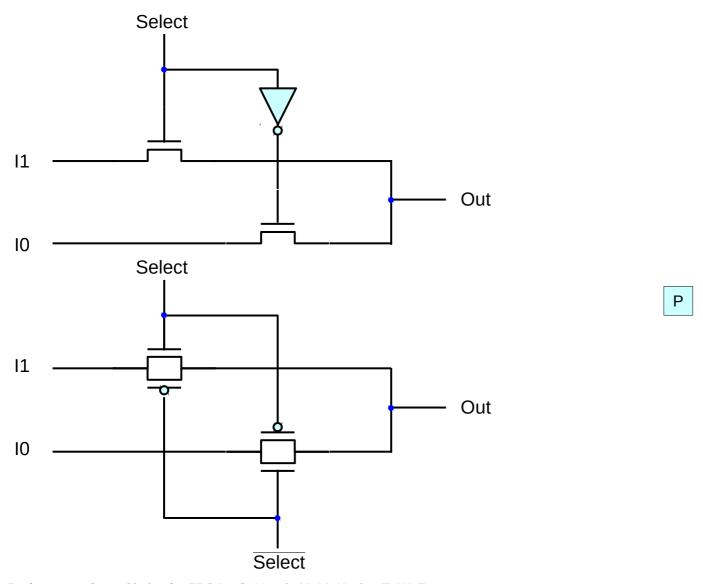
Cout = $\overline{\text{Cin}}$ inverse propagate

Parity Checker

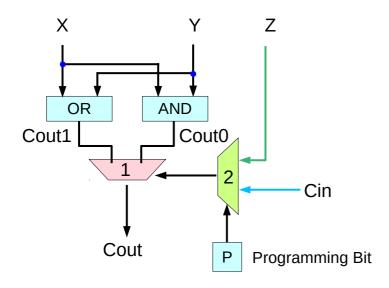
		Cin	Cin	
X	Υ	Cout1	Cout0	
0	0	1	0	$\overline{X} \overline{Y}$
0	1	0	1	$\overline{X}Y$
1	0	0	1	$X\overline{Y}$
1	1	1	0	ΧY


Cout1	Cout0	Cout	Name
0	0	0	Kill
0	1	Cin	Inverse Propagate
1	0	Cin	Propagate
1	1	1	Generate

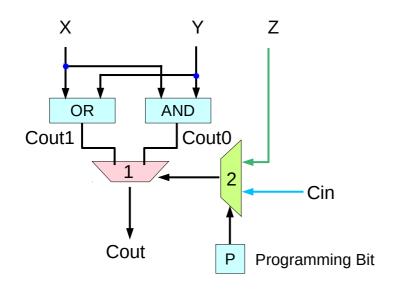
Computing Par	ity		
X ⊕ Y ⊕ Cin			
0 ⊕ 0 ⊕ Cin	Cin		
0 ⊕ 1 ⊕ Cin	Cin		
1 ⊕ 0 ⊕ Cin	Cin		
1 ⊕ 1 ⊕ Cin	Cin		

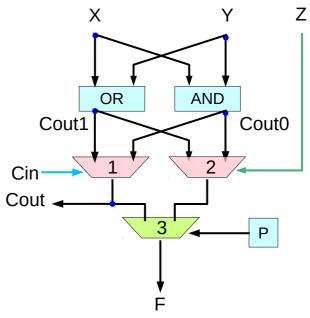

Cout1=1 when Cin=1
Cout0=0 when Cin=0
Cout = Cin propagate

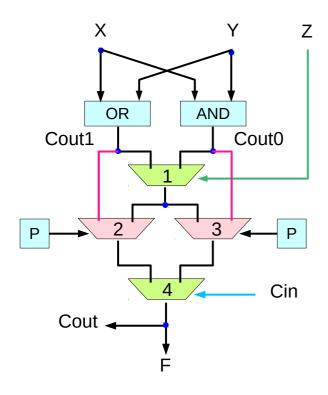
Cout1=0 when Cin=1
Cout0=1 when Cin=0
Cout = Cin inverse propagate


Ripple Carry Chain

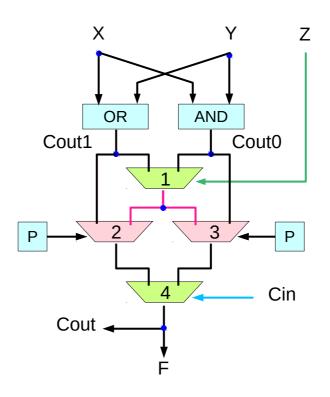
Ripple Carry Chain



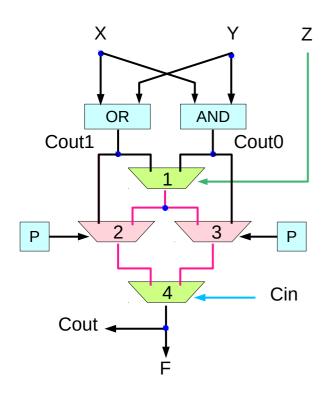

High Performance Carry Chains for FPGAs, S. Hauck, M. M. Hosler, T. W. Fry


Significantly slower
Two muxes on the carry chain in each cell
Delay 1 for first cell
Delay 3 for each additional cell in the carry chain
1 delay for mux 2 and 2 delays for mux 1
Overall 2n-2 for an n-cell carry chain

The critical path comes from th 2-LUTs and not input Z Since the delay through the 2-LUTs will be larger than Through mux 2 in the first cell

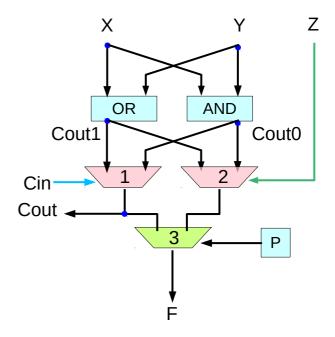


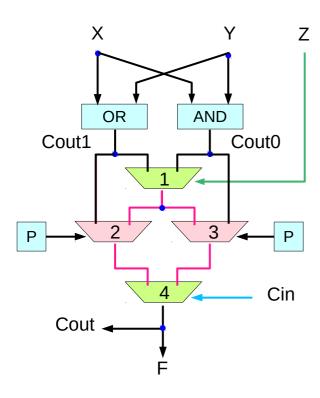
- not logically equivalent
- no longer use the Z input in the <u>first</u> cell since Z is only attached to mux2 and mux 2 does not lead to the carry cells



for cells in the middle of a carry chain mux2 passes Cout1 mux3 passes Cout0 mux4 receives Cout1 and Cout0 provides a standard ripple carry path.

For the first cell in a carry chain with a carry input (provided by input Z), mux2 and mux3 both pass the value from mux1


the two main inputs to mux4 are identical the output of mux4 (Cout) will be the same as the output of mux1 (ignoring Cin)



mux1's main inputs are driven by two 2-LUTs (OR, AND) controlled by X and Y mux1 forms a 3-LUT with the other 2-LUTs

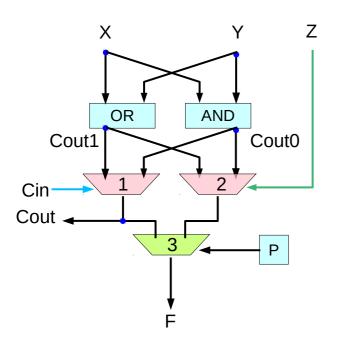
When mux2 and mux3 pass the value from mux1 (Cout1 and Cout2 respectively) the circuit is configured to continue the carry chain

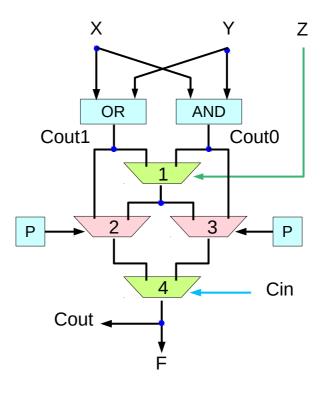
Functionally equivalent

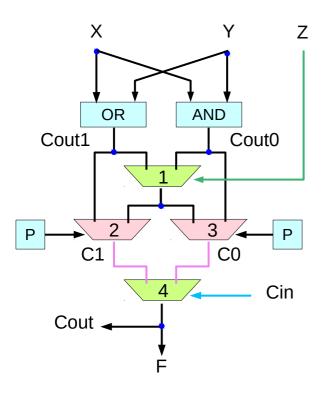
a delay of 3 in the first cell
(1 in mux1, 1 in mux2, 1 in mux4)
2 in all other cells in the carry chain
an total delay of 2n+1 for an n-bit carry chain

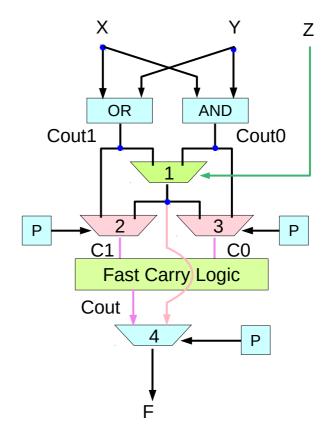
t1 gate delay slower than that of fig 2a, a carry input to the first cell is enabled

Also, for carry computations that do not need this feature, the first cell in a carry chain built from fig 2b can be configured to bypass mux1, reducing the overall delay to 2n, which is identical to that of fig2a.

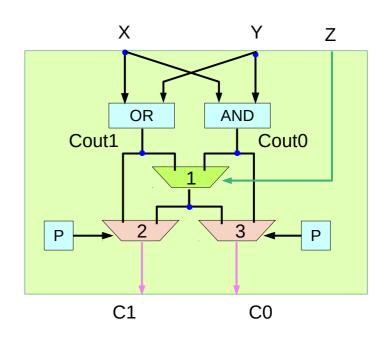

in order to implement a n-bit carry chain with a carry input, the design of fig 2a requires an additional cell at the beginning of the chain to bring in this input, resulting in a delay of 2(n+1)=2n+2, which is lower than that of the design in fig2b


thus, the design of fig 2b is the preferrred ripple carry design among those presented so far

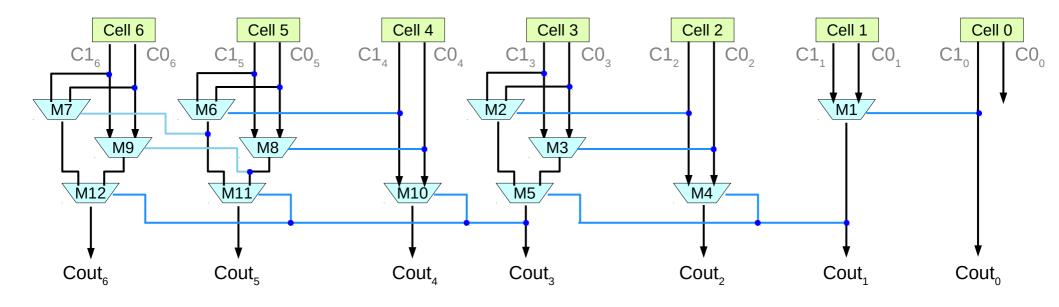

However, carry chains built from this design have a delay of 3 in the first cell (1 in mux1, 1 in mux2, 1 in mux4) and 2 in all other cells in the carry chain, yielding an overall delay of 2n+1 for an n-bit carry chain. thus, although this design is 1 gate delay slower than that of fig 2a, it provides the ability to have a carry input to the first cell in a carry chain, something that is important in many computations.


Also, for carry computations that do not need this feature, the first cell in a carry chain built from fig 2b can be configured to bypass mux1, reducing the overall delay to 2n, which is identical to that of fig2a.

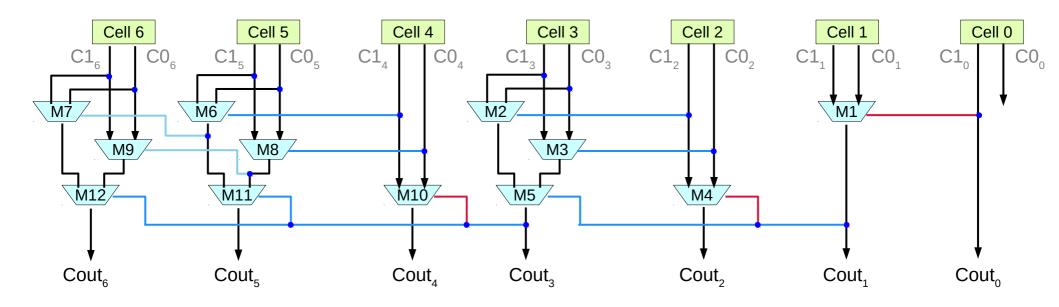
on the other hand, in order to implment a n-bit carry chain with a carry input, the designof fig 2a requires an additional cell at the beginning of the chain to bring in this input, resulting in a delay of 2(n+1)=2n+2, which is lower than that of the design in fig2b thus, the design of fig 2b is the preferrred ripple carry design among those presented so far



$$Cout_i = (Cout_{i-1} \cdot C1_i) + (\overline{Cout_{i-1}} \cdot C0_i)$$



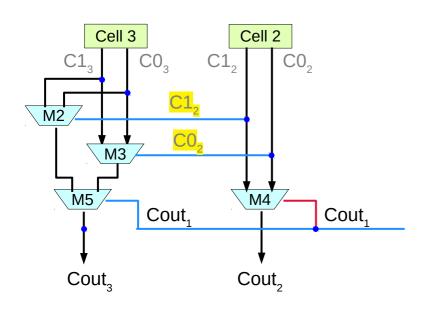
$$Cout_i = (Cout_{i-1} \cdot C1_i) + (\overline{Cout_{i-1}} \cdot C0_i)$$


Fast Carry Logc

Carry Select Adder
Carry Lookahead Adder
Brent-Kung
Variable Block
Ripple Carry Adder

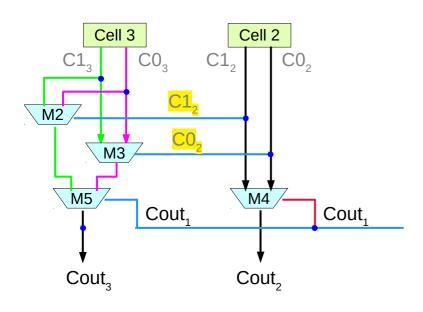
https://en.wikipedia.org/wiki/Carry-lookahead_adder

$$Cout_i = (Cout_{i-1} \cdot C1_i) + (\overline{Cout_{i-1}} \cdot C0_i)$$

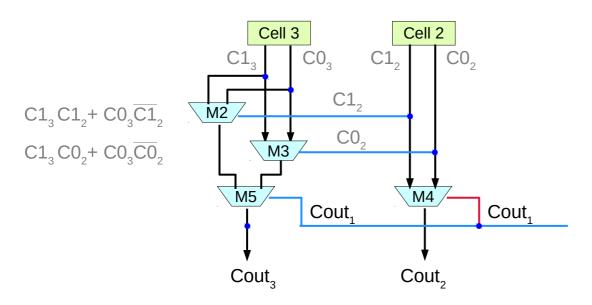

$$Cout_i = (Cout_{i-1} \cdot C 1_i) + (\overline{Cout_{i-1}} \cdot C 0_i)$$

$$Cout_1 = (Cout_0 \cdot C1_1) + (\overline{Cout_0} \cdot C0_1)$$

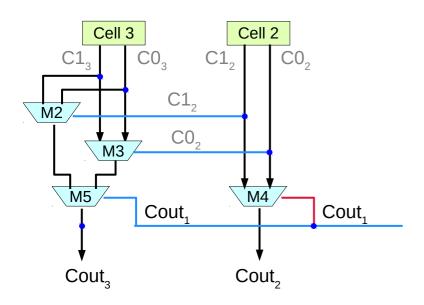
$$Cout_1 = (C1_0 \cdot C1_1) + (\overline{C1_0} \cdot C0_1)$$


$$Cout_{i+1} = (Cout_i \cdot C1_{i+1}) + (\overline{Cout_i} \cdot C0_{i+1})$$

$$Cout_{i+1} = \left(\left[\left(Cout_{i-1} \cdot C \, \mathbf{1}_i\right) + \left(\overline{Cout_{i-1}} \cdot C \, \mathbf{0}_i\right)\right] \cdot C \, \mathbf{1}_{i+1}\right) + \left(\overline{\left[\left(Cout_{i-1} \cdot C \, \mathbf{1}_i\right) + \left(\overline{Cout_{i-1}} \cdot C \, \mathbf{0}_i\right)\right]} \cdot C \, \mathbf{0}_{i+1}\right)$$


$$(C1_3 C1_2 + C0_3 \overline{C1}_2)Cout_1 + (C1_3 C0_2 + C0_3 \overline{C0}_2)\overline{Cout}_1$$

$$\begin{aligned} &Cout_{i} = \left(Cout_{i-1} \cdot C \cdot \mathbf{1}_{i}\right) + \left(\overline{Cout_{i-1}} \cdot C \cdot \mathbf{0}_{i}\right) \\ &Cout_{i+1} = \left(Cout_{i} \cdot C \cdot \mathbf{1}_{i+1}\right) + \left(\overline{Cout_{i}} \cdot C \cdot \mathbf{0}_{i+1}\right) \\ &Cout_{2} = \left(Cout_{1} \cdot C \cdot \mathbf{1}_{2}\right) + \left(\overline{Cout_{1}} \cdot C \cdot \mathbf{0}_{2}\right) \\ &Cout_{3} = \left(Cout_{2} \cdot C \cdot \mathbf{1}_{3}\right) + \left(\overline{Cout_{2}} \cdot C \cdot \mathbf{0}_{3}\right) \\ &= \left(\left(\left(Cout_{1} \cdot C \cdot \mathbf{1}_{2}\right) + \left(\overline{Cout_{1}} \cdot C \cdot \mathbf{0}_{2}\right)\right) \cdot C \cdot \mathbf{1}_{3}\right) \\ &+ \left(\overline{\left(\left(Cout_{1} \cdot C \cdot \mathbf{1}_{2}\right) + \left(\overline{Cout_{1}} \cdot C \cdot \mathbf{0}_{2}\right)\right) \cdot C \cdot \mathbf{0}_{3}\right) \\ &= \left(C \cdot \mathbf{1}_{3} C \cdot \mathbf{1}_{2} Cout_{1} + C \cdot \mathbf{1}_{3} C \cdot \mathbf{0}_{2} \overline{Cout_{1}}\right) \\ &\left(\overline{\left(\left(Cout_{1} \cdot C \cdot \mathbf{1}_{2}\right) \cdot \left(\overline{Cout_{1}} \cdot C \cdot \mathbf{0}_{2}\right)\right) \cdot C \cdot \mathbf{0}_{3}\right) \\ &= \left(\overline{\left(\left(Cout_{1} + \overline{C} \cdot \mathbf{1}_{2}\right) \cdot \left(Cout_{1} + \overline{C} \cdot \mathbf{0}_{2}\right)\right) \cdot C \cdot \mathbf{0}_{3}\right) \\ &= \left(\overline{\left(Cout_{1}} \cdot Cout_{1} + \overline{C} \cdot \mathbf{1}_{2} Cout_{1} + \overline{Cout_{1}} \overline{C} \cdot \mathbf{0}_{2} + \overline{C} \cdot \mathbf{1}_{2} \overline{C} \cdot \mathbf{0}_{2}\right) \cdot C \cdot \mathbf{0}_{3} \\ &= \left(\overline{C} \cdot \mathbf{1}_{2} Cout_{1} + \overline{C} \cdot \mathbf{1}_{2} \overline{Cout_{1}}\right) \cdot C \cdot \mathbf{0}_{3} \\ &= \left(\overline{C} \cdot \mathbf{1}_{2} Cout_{1} + \overline{C} \cdot \mathbf{0}_{2} \overline{Cout_{1}}\right) \cdot C \cdot \mathbf{0}_{3} \\ &= \left(\overline{C} \cdot \mathbf{1}_{2} Cout_{1} + \overline{C} \cdot \mathbf{0}_{2} \overline{Cout_{1}}\right) \cdot C \cdot \mathbf{0}_{3} \end{aligned}$$


$$(C1_3C1_2 + C0_3\overline{C1}_2)Cout_1 + (C1_3C0_2 + C0_3\overline{C0}_2)\overline{Cout}_1$$

$$\begin{split} &= (\overline{Cout_1}Cout_1 + \overline{C1_2}Cout_1 + \overline{Cout_1}\overline{C0_2} + \overline{C1_2}\overline{C0_2}) \cdot C0_3 \\ &= (\overline{C1_2}Cout_1 + \overline{C0_2}\overline{Cout_1}) \cdot C0_3 \\ &= (C0_3\overline{C1_2}Cout_1 + C0_3\overline{C0_2}\overline{Cout_1}) \end{split}$$

$$(C1_3 C1_2 + C0_3 \overline{C1}_2)Cout_1 + (C1_3 C0_2 + C0_3 \overline{C0}_2)\overline{Cout}_1$$

$$= C1_3 \cdot \left(C1_2 Cout_1 + C0_2 \overline{Cout_1}\right)$$
$$+ C0_3 \cdot \left(\overline{C1_2} Cout_1 + \overline{C0_2} \overline{Cout_1}\right)$$

$$\begin{split} Cout_{i} &= \left(Cout_{i-1} \cdot C \, \mathbf{1}_{i}\right) + \left(\overline{Cout_{i-1}} \cdot C \, \mathbf{0}_{i}\right) \\ Cout_{i+1} &= \left(Cout_{i} \cdot C \, \mathbf{1}_{i+1}\right) + \left(\overline{Cout_{i}} \cdot C \, \mathbf{0}_{i+1}\right) \\ Cout_{i+1} &= \left(\left[\left(Cout_{i-1} \cdot C \, \mathbf{1}_{i}\right) + \left(\overline{Cout_{i-1}} \cdot C \, \mathbf{0}_{i}\right)\right] \cdot C \, \mathbf{1}_{i+1}\right) \\ &+ \left(\overline{\left[\left(Cout_{i-1} \cdot C \, \mathbf{1}_{i}\right) + \left(\overline{Cout_{i-1}} \cdot C \, \mathbf{0}_{i}\right)\right]} \cdot C \, \mathbf{0}_{i+1}\right) \end{split}$$

References

- [1] http://en.wikipedia.org/
- [2] J-P Deschamps, et. al., "Sunthesis of Arithmetic Circuits", 2006