Hamiltonian Cycle (3A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Hamiltonian Cycles

A Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once.

A Hamiltonian cycle is
a Hamiltonian path that is a cycle.
the Hamiltonian path problem is NP-complete.

Hamiltonian Cycles

The above as a twodimensional planar graph

Hamiltonian Cycles

Hamiltonian Cycles

- a complete graph with more than two vertices is Hamiltonian
- every cycle graph is Hamiltonian
- every tournament has an odd number of Hamiltonian paths
- every platonic solid, considered as a graph, is Hamiltonian
- the Cayley graph of a finite Coxeter group is Hamiltonian

Complete Graphs and Cycle Graphs

K_{7}, a complete graph with 7 vertices

Complete Graphs

Tournament Graphs

https://en.wikipedia.org/wiki/Tournament_(graph_theory

Platonic Solid Graphs

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces
			(Animation) (Animation) (3D model) (3D model)	(3D model)

Hamiltonian Cycles - Properties (1)

Any Hamiltonian cycle can be converted to a Hamiltonian path by removing one of its edges,
but a Hamiltonian path can be extended to Hamiltonian cycle only if its endpoints are adjacent.

All Hamiltonian graphs are biconnected, but a
biconnected graph need not be Hamiltonian

Biconnected Graph

a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected.
a biconnected graph has no articulation vertices.
The property of being 2-connected is equivalent to biconnectivity, with the caveat that the complete graph of two vertices is sometimes regarded as biconnected but not 2-connected.

Biconnected Graph Examples

A biconnected graph on four vertices and four edges

A graph that is not biconnected. The removal of vertex x would disconnect the graph.

A biconnected graph on five vertices and six edges

A graph that is not biconnected. The removal of vertex x would disconnect the graph.

Eulerian Graph

An Eulerian graph G:

a connected graph in which every vertex has even degree

An Eulerian graph G necessarily has an Euler cycle, a closed walk passing through each edge of G exactly once.

Eulerian Graph (1)

The Eulerian cycle corresponds to a Hamiltonian cycle in the line graph $L(\mathbf{G})$, so the line graph of every Eulerian graph is Hamiltonian graph.

G

Eulerian Cycle ABCDECA
$\mathrm{L}(\mathbf{G})$

\qquad Hamiltonian Cycle
1-2-3-4-5-6-1

Eulerian Graph (2)

The Eulerian cycle corresponds to a Hamiltonian cycle in the line graph $L(\mathbf{G})$, so the line graph of every Eulerian graph is Hamiltonian graph.

G

Eulerian Cycle ABCEDCA
$\mathrm{L}(\mathbf{G})$

\qquad Hamiltonian Cycle
1-2-5-4-3-6-1

Eulerian Path (1)

The Eulerian path corresponds to a Hamiltonian path in the line graph $L(\mathbf{G})$

G

Eulerian Path
ABCADC
$\mathrm{L}(\mathbf{G})$

Hamiltonian Path
1-2-3-4-5

Eulerian Path (2)

Line graphs may have other Hamiltonian cycles that do not correspond to Euler cycles.

G

$L(\mathbf{G})$

Eulerian Path
FEACBDCFDBA

Hamiltonian Path
1-2-3-4-5-6-7-8-9-10

Eulerian Path (3)

Line graphs may have other Hamiltonian cycles that do not correspond to Euler cycles.

G

L(G)
not always

Hamiltonian Cycle
1-7-3-6-8-5-4-9-10-2-1

Hamiltonian Cycles - Properties (2)

This Eulerian cycle corresponds to a Hamiltonian cycle in the line graph $L(G)$, so the line graph of every Eulerian graph is Hamiltonian graph.

Line graphs may have other Hamiltonian cycles that do not correspond to Euler paths.

The line graph $L(G)$ of every Hamiltonian graph G is itself Hamiltonian, regardless of whether the graph G is Eulerian.

Line Graphs

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph $L(G)$ that represents the adjacencies between edges of G.

Given a graph G, its line graph $L(G)$ is a graph such that

- each vertex of $L(G)$ represents an edge of G; and
- two vertices of $\mathrm{L}(\mathrm{G})$ are adjacent if and only if their corresponding edges share a common endpoint ("are incident") in G.

That is, it is the intersection graph of the edges of G, representing each edge by the set of its two endpoints.

Line Graphs Examples

Hamiltonian Cycles - Properties (3)

A tournament (with more than two vertices) is Hamiltonian if and only if it is strongly connected.

The number of different Hamiltonian cycles in a complete undirected graph on n vertices is ($\mathrm{n}-1$)! / 2 in a complete directed graph on n vertices is ($n-1$)!.

These counts assume that cycles that are the same apart from their starting point are not counted separately.

Number of Hamiltonian Cycles (1)

A BCDE	$A B$	$C D E$	ABC	$D E$	$A B C D$	E	ABCDE
			$A B D$	$C E$	ABCE	D	ABCED
	AC	BDE	$A B E$	$C D$	ABDC	E	ABDCE
					ABDE	C	ABDEC
	$A D$	BCE	ACB	$D E$	ABEC	D	ABECD
			ACD	$B E$	$A B E D$	C	ABEDC
	AE	$B C D$	ACE	$B D$			
					ACBD	E	ACBDE
			$A D B$	CE	ACBE	D	ACBED
			ADC	$B E$	ACDB	E	ACDBE
			ADE	BC	ACDE	B	ACDEB
					ACEB	D	ACEBD
			AEB	$C D$	ACED	B	ACEDB
			$A E C$	$B D$			
			$A E D$	BC	ADBC	E	ADBCE
					ADBE	C	ADBEC
					ADCB	E	ADCBE
					ADCE	B	ADCEB
					ADEB	C	ADEBC
					ADEC	B	ADECB
					AEBC	D	AEBCD
					$A E B D$	C	AEBDC
					AECB	D	AECBD
					AECD	B	AECDB
					AEDB	C	AEDBC
					AEDC	B	AEDCB

Number of Hamiltonian Cycles (2)

$$
(5-1)!=24
$$

https://en.wikipedia.org/wiki/Hamiltonian_path
$\left.\begin{array}{lllll}\hline A B C D E & B A C D E & C A B D E & & \text { DABCE }\end{array}\right)$ EABCD

Number of Hamiltonian Cycles (3)

$$
\frac{(5-1)!}{2}=\frac{24}{2}=12
$$

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE
$A B C E D$
$A B D C E$
$A B D E C$
$A B E C D$
$A B E D C$
ACBDE
ACBED
ACDBE
ACDEB
ACEBD
$A C E D B$
ADBCE
$A D B E C$
$A D C B E$
$A D C E B$
$A D E B C$
$A D E C B$
$A E B C D$
$A E B D C$
$A E C B D$
$A E C D B$
$A E D B C$
$A E D C B$

$$
\begin{aligned}
& A-B-C-D-E-A \\
& A-B-C-E-D-A \\
& A-B-D-C-E-A
\end{aligned}
$$

$$
(n-1)!/ 2
$$

Number of Hamiltonian Cycles (4)

https://en.wikipedia.org/wiki/Hamiltonian_path

ABCDE
ABCED
ABDCE
ABDEC
$A B E C D$
$A B E D C$
ACBDE
ACBED
ACDBE
$A C D E B$
$A C E B D$
$A C E D B$
$A D B C E$
$A D B E C$
$A D C B E$
$A D C E B$
$A D E B C$
$A D E C B$
$A E B C D$
$A E B D C$
$A E C B D$
$A E C D B$
$A E D B C$
$A E D C B$

$A B C D E$	$A B C D E$
$A B C E D$	$A B C E D$
$A B D C E$	$A B D C E$
$A B D E C$	$A B D E C$
$A B E C D$	$A B E C D$
$A B E D C$	$A B E D C$
$A C B D E$	$A C B D E$
$A C B E D$	$A C B E D$
$A C D B E$	$A C D B E$
$A C D E B$	$A C E B D$
$A C E B D$	$A D B C E$
$A C E D B$	$A D C B E$

($\mathrm{n}-1$)! $/ 2$

No Hamiltonian Cycle

No Hamiltonian Cycle

No Hamiltonian Cycle

Hamiltonian Cycle

Strongly Connected Component

a directed graph is said to be strongly connected or diconnected if every vertex is reachable from every other vertex.

The strongly connected components or diconnected components of an arbitrary directed graph form a partition into subgraphs that are themselves strongly connected.

SCC and WCC

a directed graph is strongly connected if there is a path from \mathbf{a} to \mathbf{b} and from \mathbf{b} to \mathbf{a} whenever \mathbf{a} and \mathbf{b} are vertices in the graph
a directed graph is weakly connected if there is a path between every two vertices in the underlying undirected graph (either way)
directions of edges are disregarded

SC examples (1)

SC examples (2)

SCC and WCC examples

three strongly connected components

References

[1] http://en.wikipedia.org/
[2]

