Dualiké en dimenón fimie chapine 3

1) $\frac{\text { Géneralits }}{E k_{c u}\left(k_{c c}\right)}$
 $\mathscr{L}(E, k)=E^{*}$ hud $\alpha e E$
Prop1 Si Ekowof, dim $E=n \geqslant 1$

- H-loms $E^{*} \mu$ simn

$\Rightarrow \mathrm{Ka} \ell \mathrm{HP}$
Prop2 li $\in k_{c}$
(1) Ni $\varphi \in E^{*}, \varphi \neq 0$ dus wer $\rho H p$ de E ct $\forall a \in E \backslash k_{n} \varphi, E=k_{n} \varphi \oplus \mathbb{K}_{a}$
(2) sinint $\varphi, \psi \in \epsilon^{+}-k_{n} \varphi=k a \varphi \Leftrightarrow \exists \lambda \in k, \psi=\lambda \varphi$
$\int \operatorname{Demo}(1) \varphi \neq 0$, $a \in \in \operatorname{tq} \varphi(a) \neq 0$ ik $a \neq k \ln \varphi$

$$
\begin{aligned}
& D=K_{a}, H=K_{a} \varphi, x \in E \text {, Vowner } \lambda \in K \text { ? } \\
& t h=(x-\lambda a) \in \operatorname{kn} y \\
& \varphi(h)=\varphi(n)-\lambda \varphi(a)=0, \quad \lambda=\frac{\varphi(n)}{\varphi(a)} \\
& \longrightarrow x=\left(k-\lambda_{a}\right)+\lambda_{a} \in H+D \quad \longrightarrow \quad E=H+D
\end{aligned}
$$

(2) NB $\varphi=0 \Leftrightarrow$ Kan $\varphi=\epsilon \quad \varphi=0, \varphi \neq 0$

$$
\Leftrightarrow \text { sident } \quad \begin{aligned}
& \psi(x)=\lambda \varphi(x) \quad \psi(x)=0 \Leftrightarrow \varphi(x)=0 \\
& \lambda \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a \in E-\operatorname{ker\varphi } \quad(11 \Rightarrow \operatorname{ka\varphi } \varphi \theta k a=E \\
& x \in E \quad x=h+\mu a \quad \varphi(x)=\mu \varphi(a) \\
& \begin{array}{l}
h \in k_{n} y=k_{n} y \\
\mu \in K
\end{array} \\
& \mu \in K \\
& \varphi=\frac{\lambda_{ \pm 0}}{\frac{\varphi(2)}{\psi(h)}} \psi
\end{aligned}
$$

Mm Eker quy hart a commait 1 bak $B=\left(s_{i}\right)_{i}=\pi$ $x \in \in$ recomponsk sus la furre $x=\sum_{i \in I} x_{i} b_{i}$ in $x_{i} \in k$ $\forall i \in I$ avec $J=\left\{i \in I / x_{i} \neq 0\right\}$ fins.
$j \in I \quad \varphi_{j}=e_{j}^{*} \tan \epsilon^{*}$
$x=\sum_{i \in I} x_{i} e_{i} \longrightarrow x_{j} \quad$ "jiche foure wordaned"

$$
\forall \forall^{\prime \prime} \in I \quad \varphi_{i}\left(e_{i}\right)=\delta_{i, j}
$$

relation de déúnterve $\sum_{i \in x} d_{i} \varphi_{i}=0$ on' $\left(d_{i}\right) \notin k^{I}$ aimp fimi valem en $e_{j} \Rightarrow \lambda_{j}=0 \forall j \in I$

\[

\]

Si $\in \min y, B^{*}$ mor chernakiv

$$
\varphi: \sum_{i \in I} x_{i} h_{i} \mapsto \sum x_{i} \quad \varphi \notin \operatorname{Vcch}\left(B^{*}\right) \text { Abador! }
$$

II Duahite en yf

$$
E k=n \text { gen din } \epsilon=n \geqslant 1
$$

- Introduction caleve analytigne:

$$
\begin{aligned}
& B=\left(b_{1}, \ldots, b_{n}\right) \text { have } d e \in \\
& \varphi \in \epsilon^{*} \quad \varphi: E \rightarrow k \\
& L=\operatorname{Mat}(\varphi ; B,(1))=\left(a_{n}-a_{n}\right) \in \operatorname{Mrin}(k) \\
& \varphi\left(b_{i}\right)=a i \in k \\
& x \in E \quad X=\operatorname{rar}_{\beta}(x)=\binom{x_{1}}{x_{n}} \text { ic } x=\sum_{i=1}^{n} x_{i} b_{i} \\
& \varphi(n)=L \times X=\sum_{i=1}^{n} a_{i} x_{i}
\end{aligned}
$$

$\operatorname{Ken} \varphi$ d'egn ds B $\sum a_{i} x_{i}=0$
$\varphi \neq 0$ ic $L \neq 0$
$H=k a$ Y $H P$ \& E

1) Bax unale d II hane oh \in

Defl thop foit Ekevy ct $B=($ end., en $)$ biac de E On corsidite $\varphi_{i}=e_{i}^{*}: \sum_{j=1}^{n} x_{j} e_{j} \mapsto x_{i} \forall v^{\prime} \in[1, n]$
Ators $B^{+}=\left(\varphi_{1},-, \varphi_{n}\right)$ base de ϵ^{*} dike base luak de E.

Démo \& B^{*} libre Caluel peérdent) ot Cand $B^{*}=n=\operatorname{sim} E^{*}$
NB $\left(\varphi_{1}, \ldots, \varphi_{n}\right)=B^{*}$, fanik is forms coordonnés dans 3.
Caracteriration, Formuluire

$$
\begin{aligned}
& \forall i, j \in[1, n] \quad \varphi_{i}\left(e_{j}\right)=\delta_{i j} \\
& \forall x \epsilon \in, x=\sum_{i=1}^{n} \varphi_{i}(x) e_{i} \\
& \left.\forall \varphi \in E^{*}, \varphi=\sum_{i=1}^{n} \varphi_{i j}\right) \varphi_{i}
\end{aligned}
$$

Nem $E=\mathbb{R}^{n} \quad \zeta$ bre canonign: $\quad \zeta^{*}=\left(\varphi_{n}, \ldots, e_{n}\right)$

$$
\varphi_{i}\left(x_{1}, x_{n}\right)=x_{i}
$$

Ex 1

$$
\begin{aligned}
& E=\mathbb{R}_{n}[X]>P_{h}=(x-1)^{h} \quad L \in \mathbb{N} \\
& B=\left(P_{0}, P_{n}\right) \text { ban de } E \text { ? } B^{*} \text { ? }
\end{aligned}
$$

- Bechelomide en degué \longrightarrow base \longrightarrow
- Taylon: $\forall P \in E, P(x)=\sum_{n=0}^{n} \frac{P(n)}{(a)}(x-1)^{2}$

$$
\begin{aligned}
& B^{*}=\left(\varphi_{0},-\varphi_{n}\right) \\
& \text { avec } \varphi a: p \mapsto \frac{p^{(\mu)}(1)}{h!}
\end{aligned}
$$

$E \times 2 \quad E=\mathbb{R}_{n}(x), a_{0}, a_{n} \in \mathbb{M}$ Zここ 2 mishinch

- Iplahi n Lajnaze,$L_{i}\left(a_{j}\right)=\delta_{i j} \ldots$
- $\forall P \in E, P(x)=\sum_{i=0} P\left(a_{i}\right) L_{i}(x)$ $\chi^{*}=\left(\varphi_{0},, \varphi_{n}\right)$ ance $p_{a}: p$ w $p\left(a_{e}\right)$

2) Bax priduale / ankétuake dr1bar de E^{*}

Priliminix Ekevdy din $E=n$

$$
\begin{aligned}
& B=\left(e_{1}, \text {,en }\right) \text { bave de } \in, \zeta^{*}=\left(\varphi_{1} \text {, ten haded } \in\right. \\
& \forall i, j \in \mathbb{1}, n \partial, \varphi_{i}\left(l_{j}\right)=\delta_{i j}
\end{aligned}
$$

Considenoms Si Bbax de $B=(c .$, , en)

$$
v_{\phi}(B)=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \text { baxe canarigne Ne } K^{n}
$$

Rrop E kenly, $\lim E=n$ dos $B \rightarrow B^{*}$ edt uve lijechte
de llan des bass de G ma lian des baess re ϵ^{*} -
这 in B bax le E, B^{+}bro de E^{*} (2mentare de B)
hec Dhan M $E^{+}, \partial!$ han $3 \mu E$ ty $0^{*}=\phi$
B ban arteduake de
temo On perts le $\phi=\left(\varphi_{1},-4_{n}\right)$ barde E^{+}
mit $\left.v: x \mapsto k_{E} k_{q_{n}}(n), \ldots \cdot \varphi_{n}(n)\right)$ knv?
Comire i'x $t \in \backslash\{0\}$ ق $\varphi \in \epsilon^{*} / \varphi(x)=1$

$$
\begin{aligned}
& x \neq 0, v_{1}=x \text { anylefiec } n=\zeta=\left(v_{1},-, v_{n}\right) \text { bema } k \in \\
& 6^{*}=\left(\psi_{1}, \ldots, \varphi_{n}\right) \quad \varphi_{1}\left(v_{1}\right)=1 \quad \varphi=v_{1}
\end{aligned}
$$

Si $x \in$ Ker r, si $x \neq 0$ on pommit $\operatorname{kamm} \varphi \in \epsilon^{+}$ $\operatorname{tq} \varphi(x)=1, \phi \operatorname{lax} d E^{*}, \varphi=\sum d_{i} \varphi_{i}, \varphi(x)=0=1$ cel kn $v=\{0\}$
(s) v ismonoptisme de $\in \operatorname{mo} k^{n}$

$$
\begin{aligned}
& \Rightarrow \text {-inj, ime } E=n=\text { him } k^{2} \Rightarrow v \text { bij } \\
& B=V^{-1}(6) \text { ž baik can Me } K^{n} \text { convient, Buljue }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{r_{n}}: \varphi_{E} \mapsto\left(\varphi\left(e_{n}\right), \varphi\left(e_{n}\right)\right) \\
& \text { - Si: } \phi=\left(e_{1}, \text {, } \varphi_{n}\right) \text { ban de } E^{+} \\
& v_{\phi}: x \mapsto\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right) \\
& \text { m } \phi=B^{*}, \varphi_{i}\left(e_{j}\right)=\delta_{i j}
\end{aligned}
$$

suchen BH, $B^{*}=\phi$ ejpunaut $=r(B)=\left(\varepsilon_{0},-, \varepsilon_{n}\right)$ lascaü

$$
\begin{aligned}
& \varphi_{i}\left(e_{j}\right)=\delta_{i j} \\
& v\left(e_{j}\right)=\left(\varphi_{1}\left(e_{j}\right),-, \varphi_{n}\left(e_{j}\right)=(0,-1,-0)\right. \\
& v^{-1} \text { ijomoplisme de } k^{n} \min E
\end{aligned}
$$

\rightarrow Réfimin $b=v^{-1}\left(\varepsilon_{0},, \varepsilon_{n}\right)=\left(e_{n},, e_{n}\right), o n \cdot$ Sim $)^{*}=\phi$
Buncigm: B, B^{\prime} Amx candidats ty $B^{*}=b^{\prime *}$

$$
t(i, j) \cdot \varphi:\left(e_{j}-e_{j}^{\prime}\right)=0 \Rightarrow e_{j}-e_{j}^{\prime}=0 \text { y lemm }
$$

CSQ Ekwif.
$+B=($ e,, en $)$ ban $d \in, o r \operatorname{lni}$ anoaie $\phi=B^{*}=\left(\psi_{n}, \ldots, p_{n}\right)$ bam duale de E^{*}
** $\phi=\left(\varphi_{1}, \varphi_{n}\right)$ ban $\& E^{*}$, On hin' amacie B bon de \in arteidunce de of tg $B^{+}=$中
Conactivisation $3^{*}=\phi$ conactínisie $\forall(i, j) \in \mathbb{C}, n \rrbracket \quad \varphi_{i}(c j)=\delta_{i j}$ Formmain $\forall x \in E, x=\sum_{1}^{n} \varphi_{i}(x) e_{i}, \forall \ell \in \epsilon^{*} \varphi=\sum_{2}^{n} \varphi_{i} \dot{z}_{i} \varphi_{i}$
Cumm will $\quad b=\left(e_{1}, \ldots, e_{\infty}\right) \in \epsilon^{r}$ et $\psi=\left(\varphi_{1},,_{r}\right) \in\left(\epsilon^{*}\right)^{r}$

$$
\text { Iq } \varphi_{i}(e j)=\delta_{i j} \quad \forall(i, j) \in(1, r d)
$$

Alos 6 libre in E et Y libre do E^{*}
Demo $\sum_{i=1}^{n} \lambda_{i} e_{i}=0$ applignar $\varphi_{j} \quad \lambda_{j}=0$

$$
\sum_{i=1}^{n} \lambda_{i} y_{i}=0 \quad \text { an } e_{j}=\lambda_{j}=0
$$

Exenple (retann mm l'integobation en Lagronge)
 foit $\varphi_{i}: P \longrightarrow P \not G K\left(a_{i}\right), 0 \leqslant i \leqslant n$
$M_{i}\left(\varphi_{0},-, \varphi_{0}\right)=I$ has $L_{e} E^{*}$ bas artiduale?
\rightarrow Il mpir de taminu $\alpha=\left(L_{0}\right.$, ,,$\left.L_{-}\right) \in E^{n+}$ G $\varphi_{i}=\left(L_{j}\right)=5_{i j}$
 \mathcal{Z} liber $\sum_{i=0}^{n} \lambda_{i} l_{i}=0$, valum an $a_{j}: \lambda_{j}=0$
(9) ${ }^{\text {W }}$ libre) anni.

$$
\text { z/ } \Phi \text { han: } \mathscr{L}^{*}=\Phi
$$

Ex $a_{0}, a_{n} n+1$ riel 2 à 2 distincts nist vind

$$
E=\left(R_{n}(x)\right.
$$

Joit $\psi_{i}: P \longleftrightarrow \int_{0}^{a_{i}} P(t) d t$
$M_{y} \Psi=\left(\psi_{1} \longrightarrow, \psi_{n}\right)$ bax de ϵ^{*}, artéduale?
Exhisou we farill $B=\left(P_{0}, D_{0}, P_{n}\right) \in E^{n+1} \operatorname{tg} \psi_{i}\left(P_{j}\right)=S_{i j}$ ic $\int_{0}^{a i} P_{j}(t) d t=\delta_{i j}$, suit Q_{j} lappimitire le P_{j} d'amment eno $\Rightarrow Q_{j}\left(a_{i}\right)=\delta_{i j}$

$$
\left.\Rightarrow \text { on } Q_{j}(X)=\frac{X}{a_{j}\left(\prod_{\left.i=0, m_{0}\right)}\right.} \frac{\left(X-a_{i}\right)}{\left.a_{j}-a_{i}\right)}\right)
$$

Douc U libre das ϵ^{*} et B libn ds E

$$
\begin{aligned}
& \sum \lambda_{i} \psi_{i}=0 \quad \text { \& } P_{j}: 0 \Rightarrow \lambda_{i}=0 \\
& \sum \lambda_{i} p_{i}=0 \quad \alpha \text { qupligm } \psi_{j} \Rightarrow \lambda_{i}=0 \\
& \Rightarrow B^{*}=\Psi
\end{aligned}
$$

3) $\frac{\text { Calaids mi is HP }}{E \operatorname{kerd} n \geqslant 1}$

H HD le

$$
\varphi \in E^{*}, \varphi \neq 0 \text {; } H=k n \varphi
$$

familh $\operatorname{l}_{1 \leq p \leq n} H_{p} H_{1}, \ldots, H_{p}$ wac $H_{1}=k_{n} \varphi_{i}$

$$
F=\int_{i=1}^{r} k_{n} \varphi_{i}
$$

$1 e^{\cos }\left(\varphi_{1},-\varphi_{r}\right)$ liba do E^{*}

$$
G=\bigcap_{i=1}^{n} K_{n} \varphi_{i}, \mu_{i} G \text { ? }
$$

$\left(\varphi_{n},-\varphi_{n}\right)$ warpllite on $\Phi=\left(\varphi_{n}, T \varphi_{-}, \varphi_{r+1}, \varphi_{n}\right)$ hard $_{\in \in}$ on lni ameaic $B=\left(e_{1}, e_{n}\right)$ ban de \in

$$
\begin{aligned}
& \left.x \in \in x=\sum_{i}^{n} \varphi_{i} C_{n}\right) e_{i} \\
& x \in G \Leftrightarrow \forall_{i} \in \mathbb{C} 1, r \mathbb{D}, \varphi_{i}(x)=0 \Leftrightarrow x \in \operatorname{Vect}\left(e_{r+1}, e_{n}\right)
\end{aligned}
$$

ed $G=\operatorname{Vect}\left(e_{r+1 .}, e_{n}\right)$ de dimention $n-r$
Pen of calcul analy thin
eqn is H_{1}, \ldots, H_{r} de G ds B

$$
\begin{aligned}
& \operatorname{si}^{\prime} \varphi_{k}: \sum_{i}^{n} x_{i}+i \rightarrow \sum_{i=1}^{n} a_{k i} x_{i} \\
& G\left\{\begin{array}{l}
a_{n} x_{n}+\left[+a_{1 n} x_{n}=0\right. \\
a_{r 1} x_{1}+\quad+a_{r n} x_{n}=0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { of } V: x \longrightarrow\left(\varphi_{1}(x), \ldots, \varphi_{r}(x)\right) \\
& \text { Lcas } r g\left(\varphi_{1},-, \varphi_{p}\right)=r \quad r \leqslant p
\end{aligned}
$$

 et $\varphi_{r+1},-, \varphi_{p} \in \operatorname{Vect}\left(\varphi_{1},-, \varphi_{r}\right)$

$$
\begin{aligned}
\text { of } F & =\bigcap_{i=1}^{n} k_{n} \varphi_{i}=\bigcap_{i=1}^{n} k_{n} \varphi_{i} \\
\text { of } \varphi_{r+1} & =\sum_{i=1}^{r} \mu_{i} \varphi_{i} \quad x \in F, \varphi_{i}(x)=-=\varphi_{r}(x)=0 \Rightarrow \varphi_{m+n}(a)=0
\end{aligned}
$$ Kan φ_{r+1} JG

Thopicter Suit $E k_{\text {ardel }}^{n} \geqslant 1, \varphi_{1},-, \varphi_{p} \epsilon^{*}, F=\bigcap_{i=1}^{p} k_{a} \varphi_{i}$ unar $\operatorname{rg}\left(\varphi_{1},-, \varphi_{p}\right)=r \Leftrightarrow \operatorname{dim} F=n-r$
$S_{i}\left(\varphi_{1},-\varphi_{-}\right)$líhre, $\varphi t \epsilon^{+}$, alos φ a'camile mu

$$
\bigcap_{i=1}^{\infty} k a \varphi_{i}=F \quad \operatorname{ss}^{\prime} \varphi \in \operatorname{Vcet}\left(\varphi_{1},-, \operatorname{cen}_{n}\right)
$$

DCAN - Líbat

- $\left(\varphi_{1,}, \varphi_{r}\right)$ libar complíner un $\left(\varphi_{1,}, \varphi_{n}\right)$ bax de ϵ^{*} M ban antidunale (e. \qquad $\left.e_{n}\right)$ ct $F=V_{e c h}\left(e_{n+1}, \ldots, e_{n}\right)$

$$
\begin{aligned}
& \varphi \in E^{*}, \varphi=\sum_{i=1}^{n} \lambda_{i} \varphi_{i} \quad \lambda_{1,-i n} \in \mathbb{K} \quad \lambda_{i}=\varphi\left(c_{i}\right) \\
& \forall x \in F, \varphi(x)=0 \Leftrightarrow t_{i} \in \mathbb{Z}+1, n D \varphi\left(d_{i}\right)=0
\end{aligned}
$$

$$
\Leftrightarrow \varphi=\sum_{i=1}^{r} \varphi\left(e_{i}\right) \varphi_{i} \Leftrightarrow \varphi \in V_{e c h}\left(\varphi_{1}-\gamma \varphi_{r}\right)
$$

Exemple $E=\mathbb{R}^{3}$, bax can 6

$$
\begin{array}{ll}
H_{1} d^{\prime} \text { egn do } & x+2 y-z=0 \\
H_{2} & x+z=0
\end{array}
$$

1) $F=H_{1} \cap \mathrm{H}_{2}$ sim F ? 2) defteminas 1 plan rect de P de \in costarat F c $\mu \mu=(1,1,1)$ -

$$
\varphi_{1}:(x, y, z)+x+2 y-2 \quad H_{1}=\operatorname{kn} \varphi_{1}
$$

$$
\varphi_{2}=(x, y, z) \mapsto x+2 \quad H_{2}=\operatorname{Kan} \varphi_{2}
$$

$\left(\varphi_{1}, \varphi_{2}\right) \operatorname{libm}: \lambda_{1} \varphi_{1}+\lambda_{2} \varphi_{2}=0 \quad \operatorname{ar}(1,1,0) \quad 2 \lambda_{1}=0$
$\operatorname{rg}\left(\varphi_{1}, \varphi_{2}\right)=2 \Rightarrow \operatorname{hin} F=3-2=1$
2) P d'eqn d\& C a $x+b y+c z=0$ ie $P=\operatorname{ku} \varphi$ wre $\varphi:(x, y, z) \rightarrow a x+b y+c z$

$$
\begin{aligned}
& P>F \quad \exists \alpha, \beta, \varphi=\alpha \varphi_{1}+\beta \varphi_{2} \\
& \varphi(x)=0: 2(\alpha+\beta)=0 \quad \beta=-\alpha \\
& \varphi:(x, y, z) \leftrightarrow 2 \alpha[y-z] \quad \alpha \neq 0 \Rightarrow l d^{\prime} \text { cqn } y-z=0
\end{aligned}
$$

Exercice Formule is 3 miveanx

$$
\begin{aligned}
& a_{1}, c \in \mathbb{R}, E=\mathbb{K}_{3}[x] \quad(\mathbb{K}: \mathbb{M} \text { on } c) \\
& \varphi_{1}: P \mapsto P(a) \quad \varphi_{2}: P \mapsto P(b) \quad \varphi_{3}: P \mapsto P(c) \\
& \varphi_{4}: P \mapsto \int_{a}^{b} P(t) d t \quad-r_{g}:
\end{aligned}
$$

1) $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ libs $a_{s} \in^{*}$ si a a, b, c LäL listínchs
2) $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{3}\right)$ $-\operatorname{ctc} c \neq \frac{2+b}{2}$
3) On prend $a, b \in \mathbb{I}$ a<b ct $c=\frac{a+b}{2}$

$$
m \forall P \in \mathbb{K}_{3}(x), \int_{a}^{b} P(t) d t=\frac{b-a}{6}\left[P(a)+4 P\left(\frac{a+b}{2}\right)+p(b)\right]
$$

Nens voluare de tomaine tu tgu $D=\left\{(x, y, a) \in \mathbb{R}^{3} / \begin{array}{l}a \leqslant z \leqslant b \\ (n, t) \in D_{z}\end{array}\right\}$

$$
\begin{aligned}
& \text { aine } D_{z}=S(z) \quad \text { SDN } \lambda \text { degú } \leqslant 3 \\
& \cos _{S_{z}}^{\mathcal{S}_{x}} \quad \operatorname{DN}(D)=\frac{b-a}{b}\left(S(a)+4 S\left(\frac{a+b}{2}\right)+s(b)\right)
\end{aligned}
$$

1) ind a gaatiter entur 2 alose líts Nict r $^{\prime} a \neq b, b \neq 2 \neq c$

$$
\begin{aligned}
& P \in \underbrace{\prod_{i=1}^{n} k \varphi_{1} \varphi_{1}}_{F=\{ } \Leftrightarrow(X-a)(X-b)(X-c) / P \\
& F(X-a)(X-b)(X-c) / \lambda \in a\}
\end{aligned}
$$

$\operatorname{sim} F=1=4-n g\left(\varphi_{1}, \varphi_{2}, \varphi_{2}\right)$ (yinarer, pan rumepul)
2) $a, b, c 2=2$ dishincts

$$
\left.\begin{array}{l}
G=\prod_{i=1}^{n} k_{n} \varphi_{i}=\left\{\lambda\left((x-a)(x-b)(\lambda-c) / \lambda \int_{a}^{b}(t a)(t-b)(t-d) d t=0\right\}\right. \\
\lambda \int_{a}^{b}(t-a)(t-b)(t-c) d t
\end{array}=(a-b)^{3} \frac{(a+b-2 c)}{12}\right)
$$

3) Dac prom $a \neq b, c=\frac{a+b}{2}, \varphi_{3} \in \operatorname{Vect}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ $\partial \alpha, \beta, r \in K$ tq $\forall P \in E, \int_{a}^{b} P(H) a r=\alpha P(a)+\beta P(b)+\gamma P(c)$
Mith $1 P=1, P=X, P=x^{2}$
Mith 2 $\quad P=1, P=x-a, P=(x-a)^{2}$

$$
\left\{\begin{array}{l}
\alpha+p+\gamma=b-a \\
\beta(b-a)+\gamma(c-a)=\frac{(b-a)^{2}}{2} \\
\beta(b-a)^{2}+\gamma(c-a)=\frac{(b-a)^{3}}{3}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\alpha=\gamma=\frac{b-a}{6} \\
\beta=\frac{4}{6}(b-a)
\end{array}\right.
$$

puraigue finah (HP)

- orthogomalite $\left(E^{*} x \in x\right) \mapsto k$ Yet x "orthegemamx " in $\varphi(x)=0$
- tramzuría d's AL

