Eleckomagnotistse
chapike 9

Rayommonent lipolair
electrique
I) Dijs orcident

1) Definstion

- Distrvisution de dangs, masils, dinits par $(\rho(P, r), \vec{\jmath}(P, r))$ tg
* la chang torale est mille $\int_{P \in V} p(P, r) d \tau_{p}=0$
(V volume contenent la P dis rrsibation)
* Le monardipslaine cleckrigue es mon iletatipurner mel vavie p'riolipuats is ke rays

$$
\vec{P}=\iiint_{P \in V} \overrightarrow{O P} e^{(p, t) d \tau}
$$

$\vec{p}(H)$ now and $\forall t$ $\vec{p}(F+T)=\vec{p}(H \quad T$ pinion dlex

- Experimar utile du monut diypleine

$$
\left.\vec{P}=\iiint_{P \in V / e} \rho(P)\right\rangle_{0} P(P) \overrightarrow{O P} d r_{p}+\iiint_{P \in V / p(P)<0} \rho(P) \overrightarrow{O P} d \tau_{p}
$$

sait $Q=\iiint_{P \in V(p(P)\rangle_{0}} \rho(P) d \tau_{\rho}=-\iiint_{P \in V /(P)<C O} \rho(P) d \tau_{p}$

$$
\Rightarrow \vec{p}=Q\left(\overrightarrow{O G_{r}}-\overrightarrow{O G}\right) \quad \Rightarrow \vec{p}=Q \overrightarrow{G-G_{+}}
$$

2) Exemples
atone dans les íectnoms oxcillearts
$\left(z_{e}\right)^{-z_{e}}=\operatorname{minax}_{\text {ilctiniy }}$
li le maym se dípla

$$
\stackrel{\rightharpoonup}{p}=Z_{e} G \stackrel{G_{+}}{-}
$$

anups $\begin{aligned} b_{+} & =b_{-} \\ \vec{p} & =0\end{aligned}$
disporit'y histovige on therta
boab watalin

$$
\begin{aligned}
& \vec{P}=Q(t) \vec{G}=G_{T}
\end{aligned}
$$

cinaitLC = cirmit osullart

- arrame

$$
\therefore(0, H)=I_{0} \text { cos }(\omega t) \quad i(L, H)=0
$$

$\lambda(z, t)$ densité linneígum the dayge variation de la dhage de $[z, z+d z]$ anvere ter tedt

$$
\begin{aligned}
& d q=\frac{\partial \lambda}{\partial t} d z d t=i(z, t) d t-i(z+d z, H) t \\
&=-\frac{\partial i}{\partial z} d z d t \\
& \frac{\partial \lambda}{\partial t}+\frac{\partial i}{\partial z}=0
\end{aligned}
$$

4 xypat $(z, z+d z)$ put ithe arimilé ì an diper oucillart.
3) Hypothies

- Is muts de chays constitiont le dipole oscillant wer nor velatinists $v \ll c$ - v ade de gandem is la viteme

Si on squelle a l'ODG de lómplikule de mut lo changs

$$
V \sim \frac{a}{T} \ll c \quad \Rightarrow a \ll \lambda=c \Gamma
$$

En pratigre usrenplace a pan la rill us la distributhor.
ux atome emetfort de la lumien

$$
a \sim 10^{-10} m \quad \lambda \sim 10^{-7} m
$$

 vinifie $r>a$.
I) $\frac{\text { L samp ET aú par un lijph orideat }}{\overline{\text { ond }}}$

Hye $\vec{p}(t)=p(H) \vec{m}_{i}^{\prime} \quad-\operatorname{Si} \vec{p}^{(H)}$ quy, a obhiende le dy EOI

- empapperar los champs vís pan p_{x} ppy et V_{z}
of linimiter is gys de Ravelle.

1) Poterticbs ulands

$$
\vec{A}(n, t)=\| \|_{T \in L} \frac{\mu_{0}}{4 \pi} \frac{\vec{r}\left(P, t-\frac{P \pi}{c}\right)}{P \pi} d i n ; \quad V(\pi, t)=\iint_{p \in v} \frac{1}{4 \pi \varepsilon_{0}} \frac{p(P, t-P \pi)}{P n} d \tau_{p}
$$

Apporainations

$$
\begin{aligned}
& \left.\frac{\vec{f}(p, t-P n)}{p n}\right)
\end{aligned} \sim t-\frac{r}{c} \quad \text { f } \left\lvert\,\left(1-\frac{p \pi}{c}\right)-\left(t-\frac{r}{c}\right)=\frac{|p \pi-r|}{c}\right.
$$

2) Chap En

$$
\left\{\begin{array}{l}
\vec{E}(\overrightarrow{0, t})=-j \operatorname{jnd} V-\frac{\partial \vec{A}}{\partial t} \\
\vec{T}(0, t)=\operatorname{rot} \vec{A}
\end{array}\right.
$$

3) thems En ds la zore de royement'
$f_{a<r}$
"zore meshipe
Er. lampe quetmole $\quad \lambda \sim 10^{-7} m \quad r=1 m$ - Gmelar fir (100 TH_{+}) $\lambda \sim 3 \mathrm{~m}$ (eatp) r~h

Commertains

* Ninvissance a $\frac{1}{r} \rightarrow$ logjure pertíe
* $\vec{E} \perp \vec{m}_{r}, \vec{B} \perp \vec{m}_{r},\|\vec{B}\|=\frac{\|\vec{E}\|}{c}$ or $\vec{B}=\frac{1}{c} \overrightarrow{m_{r}}, \vec{E}$

III Prismave reyomer
diappanise de rayonsectet counbe polaine $\rho=\|\vec{\pi}\|^{2}+r^{2}$

$$
=c \mathrm{~m} \times \sin ^{2} \theta
$$

2) Primanue wyonnée
\therefore it puiname instatante thavenot I, ypire de rayen R
$i{ }_{i}^{p_{1}} \vec{R}_{i}$

$$
P(R, H)=\oiint_{n \in Y} \pi(n, H) \cdot \overrightarrow{d S_{n}}
$$

$$
=\int_{\theta=0}^{\infty} \int_{q=0}^{2 \pi}\left(\frac{\mu_{0} \min ^{2} \theta}{1 \sigma_{\sigma^{2}} c R^{2}} \overrightarrow{u_{r}}\right) \cdot\left(R d \theta \cdot R \sin \theta d \varphi_{\bar{u}}^{u_{r}}\right)\left(\ddot{p}(--)^{2}\right)
$$

$$
=\frac{10\left(\ddot{p}\left(t-\frac{R}{2}\right)\right)^{2}}{16 \pi^{2}} 12 \pi \times \underbrace{\int_{\pi=0}^{\pi}}_{4 / 3}
$$

$$
P\left(R_{1} t\right)=\frac{\mu_{0}}{6 \pi c}\left(\ddot{p}\left(t-\frac{R}{c}\right)\right)^{2}
$$

La puismain karument $y(R)$ it, maverean $y(R+\Delta R)$ a $t+\frac{\Delta R}{c}$
\rightarrow comentation de lrénugie

- vuinar mogeme muravarat y

$$
\langle P(R, r)\rangle=\frac{\mu_{0}}{6 \pi c}\left\langle\ddot{i}^{2}\right\rangle \quad \text { indep } R R
$$

3) Geríntitation

$$
\langle P\rangle=\frac{\mu_{0} q^{2}}{6 \pi c}\left\langle a^{2}\right\rangle
$$

- Fermule a lousmor : puinance saganié pan 1 danjr y apers un mut 1 racdééntir $a: P=\frac{q^{2}}{4 \pi \varepsilon_{0}} \frac{2 a^{2}}{3 c^{3}}$ Ǩnernle change an mut acciléré nuyonre de l'éngè EA

Is e^{-}not greinés ds l métal
\rightarrow sagemear X (Röntgen)
(in allerrend: Bummstrahluy)

* Molile de Bohr dr H : $\mathrm{p}^{b}=e^{-}$veyone dic jerd de llénecgie et denait "tombe." ma la moymn-

Ray ${ }^{\text {b }}$ Synchictron.
Eis putts faincean $d^{\prime} e^{-}$lon de ponitaors) m mutaie

$$
\begin{aligned}
& \text { If } \frac{\operatorname{Ca} d^{\prime} 1 \text { raviation cinnsoidale }}{\vec{p}=p_{0} \cos (\omega t) \overline{\mu_{z}}} \\
& \ddot{p}\left(t-\frac{r}{c}\right)=-\omega^{2} p_{0} \operatorname{as}\left(\omega\left(t-\frac{r}{c}\right)\right)=-\omega^{2} p_{0} \cos (\omega t-k r), a=\frac{\omega}{c} \\
& \left\{\begin{array}{l}
\vec{E}=-\frac{\sin \theta p_{0} \omega^{2}}{4 \pi c_{0}-c^{2}} \cos (\omega t-h-) \overrightarrow{u_{\theta}} \\
\vec{D}=-\frac{\mu_{0} \sin \theta}{4 \pi r c} \rho_{0} \omega^{2} \cos (\omega t-l-) \overrightarrow{\mu_{l}}
\end{array}\right. \\
& \left\langle\ddot{p}^{2}\right\rangle=\frac{1}{2} \omega^{4} p_{0}^{2} \quad\langle P\rangle=\frac{\mu_{0}}{12 \pi c} p_{0}^{2} \omega^{4}, \lambda=\frac{2 \pi c}{\lambda} \\
& \Rightarrow\langle P\rangle=\frac{4 \pi^{3}}{3} \mu_{0}^{3} p_{0}{ }^{2} \frac{1}{\lambda^{4}} \propto \frac{1}{\lambda^{4}}
\end{aligned}
$$

- Explicatior do blese de aid

Difpuritr Nayluigh : Jons laction hn chp En An Gail

 an EMAs bats bs hiectiors de leapace. la molímle a une bable LCA. La pinima liffuncé est a- $\frac{1}{\lambda^{2}}$,er $\lambda_{\text {cirach }} \sim \frac{1}{2} \lambda_{\text {max }}$ $\langle P$ ripet $\rangle \simeq 16 \Rightarrow$ conleen sleve du ciel $\left\langle P_{\text {rage }}\right\rangle$
- Plevizatien de la luncirr diffusé

$$
\begin{aligned}
& \text { 1* }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pu pu }(y \theta=0)
\end{aligned}
$$

Pom be charp aír pre py, $\theta=\frac{\pi}{2}$, comore an pt H (y mpa) ot \bar{E} selon $\overrightarrow{y y}$
(3) Donce llonde difforée an MtOx, est plainée rectilignenent smivat $\overrightarrow{\mu_{y}}$ (solui as divetion $\overrightarrow{\mu_{z}}$)

Dipôle électrique oscillant

Potentiels retardés :

$$
\vec{A}(M, t)=\frac{\mu_{0}}{4 \pi} \frac{\dot{p}\left(t-\frac{r}{c}\right)^{2}}{r} \vec{u}_{z} \text { et } V(M, t)=\frac{1}{4 \pi \varepsilon_{0}} \cos \theta\left(\frac{p\left(t-\frac{r}{c}\right)}{r^{2}}+\frac{\dot{p}\left(t-\frac{r}{c}\right)}{r c}\right)
$$

Champ électromagnétique :
$\vec{E}(M, t)=\frac{2 \cos \theta}{4 \pi \varepsilon_{0}}\left(\frac{p\left(t-\frac{r}{c}\right)}{r^{3}}+\frac{\dot{p}\left(t-\frac{r}{c}\right)}{r^{2} c}\right) \vec{u}_{r}+\frac{\sin \theta}{4 \pi \varepsilon_{0}}\left(\frac{p\left(t-\frac{r}{c}\right)}{r^{3}}+\frac{\dot{p}\left(t-\frac{r}{c}\right)}{r^{2} c}+\frac{\ddot{p}\left(t-\frac{r}{c}\right)}{r c^{2}}\right) \vec{u}_{\theta}$

$$
\vec{B}(M, t)=\frac{\mu_{0} \sin \theta}{4 \pi}\left(\frac{\dot{p}\left(t-\frac{r}{c}\right)}{r^{2}}+\frac{\ddot{p}\left(t-\frac{r}{c}\right)}{r c}\right) \vec{u}_{\varphi}
$$

NB $\left(M_{1}, \widetilde{\mu}_{r}, \vec{\mu}_{0}\right)$ 玅 Me ym $\Rightarrow \epsilon_{y}=0$ et $B_{r}=B_{0}=0$

$$
\left(H, \overrightarrow{u_{x}}, \overrightarrow{n_{y}}\right)=\left(H_{1} \overrightarrow{u_{r}}, \overrightarrow{m_{y}}\right) \text { Man d'anisp } \Rightarrow m H_{i}, E_{r}=\epsilon_{y}=0 \quad B_{s}=0
$$

Champ électromagnétique dans la zone de rayonnement : ${ }^{e n H}, \theta=\pi / 2$

$$
\vec{E}(M, t)=\frac{\sin \theta}{4 \pi \varepsilon_{0}} \frac{\ddot{p}\left(t-\frac{r}{c}\right)}{r c^{2}} \vec{u}_{\theta} \quad \text { et } \quad \vec{B}(M, t)=\frac{\mu_{0} \sin \theta}{4 \pi} \frac{\ddot{p}\left(t-\frac{r}{c}\right)}{r c} \vec{u}_{\varphi}
$$

Puissance rayonnée :

$$
\begin{array}{r}
\vec{\Pi}(M, t)=\frac{\mu_{0}}{16 \pi^{2}} \frac{\sin ^{2} \theta}{c r^{2}}\left[\ddot{p}\left(t-\frac{r}{c}\right)\right]^{2} \vec{\mu}_{r} \\
\mathcal{P}=\frac{\mu_{0}}{6 \pi c}\left[\ddot{p}\left(t-\frac{r}{c}\right)\right]^{2}=\frac{1}{6 \pi \varepsilon_{0} c^{3}}\left[\ddot{p}\left(t-\frac{r}{c}\right)\right]^{2}
\end{array}
$$

